Chengcheng Hu

Chengcheng Hu

Director, Biostatistics - Phoenix Campus
Professor, Public Health
Professor, Statistics-GIDP
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-9308

Work Summary

Chengcheng Hu has worked on a broad range of areas including cancer, occupational health, HIV/AIDS, and aging. He has extensive collaborative research in conducting methodological research in the areas of survival analysis, longitudinal data, high-dimensional data, and measurement error. His current methodological interest, arising from studies of viral and human genetics and biomarkers, is to develop innovative methods to investigate the relationship between high-dimensional information and longitudinal outcomes or survival endpoints.

Research Interest

Chengcheng Hu, Ph.D., is an Associate Professor, Public Health and Director, Biostatistics, Phoenix campus at the Mel and Enid Zuckerman College of Public Health, University of Arizona. He is also Director of the Biometry Core on the Chemoprevention of Skin Cancer Project at the University of Arizona Cancer Center. Hu has worked on multiple federal grants in a broad range of areas including cancer, occupational health, HIV/AIDS, and aging. In addition to extensive experience in collaborative research, he has conducted methodological research in the areas of survival analysis, longitudinal data, high-dimensional data, and measurement error. His current methodological interest, arising from studies of viral and human genetics and biomarkers, is to develop innovative methods to investigate the relationship between high-dimensional information and longitudinal outcomes or survival endpoints. Hu joined the UA Mel and Enid Zuckerman College of Public Health in 2008. Prior to this he was an assistant professor of Biostatistics at the Harvard School of Public Health from 2002 to 2008. While at Harvard, he also served as senior statistician in the Pediatric AIDS Clinical Trials Group (PACTG) and the International Maternal Pediatric Adolescent AIDS Clinical Trials Group (IMPAACT). Hu received his Ph.D. and M.S. in Biostatistics from the University of Washington and a M.A. in Mathematics from the Johns Hopkins University.

Publications

Vasquez, M. M., Hu, C., Roe, D. J., Chen, Z., Halonen, M., & Guerra, S. (2016). Least absolute shrinkage and selection operator type methods for the identification of serum biomarkers of overweight and obesity: simulation and application. BMC medical research methodology, 16(1), 154.
BIO5 Collaborators
Zhao Chen, Stefano Guerra, Chengcheng Hu

The study of circulating biomarkers and their association with disease outcomes has become progressively complex due to advances in the measurement of these biomarkers through multiplex technologies. The Least Absolute Shrinkage and Selection Operator (LASSO) is a data analysis method that may be utilized for biomarker selection in these high dimensional data. However, it is unclear which LASSO-type method is preferable when considering data scenarios that may be present in serum biomarker research, such as high correlation between biomarkers, weak associations with the outcome, and sparse number of true signals. The goal of this study was to compare the LASSO to five LASSO-type methods given these scenarios.

Huang, S., Chengcheng, H., Bell, M., Billheimer, D., Guerra, S., Roe, D., Monica, V., & Bedrick, E. (2018). Regularized Continuous-Time Markov Model via Elastic Net. Biometrics.
BIO5 Collaborators
Dean Billheimer, Stefano Guerra, Chengcheng Hu
Einspahr, J. G., Curiel-Lewandrowski, C., Calvert, V. S., Stratton, S. P., Alberts, D. S., Warneke, J., Hu, C., Saboda, K., Wagener, E. L., Dickinson, S., Dong, Z., Bode, A. M., & PetricoinIII, E. F. (2017). Protein activation mapping of human sun-protected epidermis after an acute dose of erythemic solar simulated light. NPJ precision oncology, 1.
BIO5 Collaborators
Clara N Curiel, Chengcheng Hu

Ultraviolet radiation is an important etiologic factor in skin cancer and a better understanding of how solar stimulated light (SSL) affects signal transduction pathways in human skin which is needed in further understanding activated networks that could be targeted for skin cancer prevention. We utilized Reverse Phase Protein Microarray Analysis (RPPA), a powerful technology that allows for broad-scale and quantitative measurement of the activation/phosphorylation state of hundreds of key signaling proteins and protein pathways in sun-protected skin after an acute dose of two minimal erythema dose (MED) of SSL. RPPA analysis was used to map the altered cell signaling networks resulting from acute doses of solar simulated radiation (SSL). To that end, we exposed sun-protected skin in volunteers to acute doses of two MED of SSL and collected biopsies pre-SSL and post-SSL irradiation. Frozen biopsies were subjected to laser capture microdissection (LCM) and then assessed by RPPA. The activation/phosphorylation or total levels of 128 key signaling proteins and drug targets were selected for statistical analysis. Coordinate network-based analysis was performed on specific signaling pathways that included the PI3k/Akt/mTOR and Ras/Raf/MEK/ERK pathways. Overall, we found early and sustained activation of the PI3K-AKT-mTOR and MAPK pathways. Cell death and apoptosis-related proteins were activated at 5 and 24 h. Ultimately, expression profile patterns of phosphorylated proteins in the epidermal growth factor receptor (EGFR), AKT, mTOR, and other relevant pathways may be used to determine pharmacodynamic activity of new and selective topical chemoprevention agents administered in a test area exposed to SSL to determine drug-induced attenuation or reversal of skin carcinogenesis pathways.

Griffin, S., Regan, T. L., Harber, P. I., Lutz, E. A., Hu, C., & Burgess, J. L. (2016). Evaluation of a fitness intervention for new firefighters: injury reduction and economic benefits. Inj Prev, 22(3), 181-8.
BIO5 Collaborators
Jefferey L Burgess, Chengcheng Hu
McKenzie, N. E., Saboda, K., Duckett, L. D., Goldman, R., Hu, C., & Curiel-Lewandrowski, C. N. (2011). Development of a photographic scale for consistency and guidance in dermatologic assessment of forearm sun damage. Archives of dermatology, 147(1), 31-6.
BIO5 Collaborators
Clara N Curiel, Chengcheng Hu

To develop a photographic sun damage assessment scale for forearm skin and test its feasibility and utility for consistent classification of sun damage.