Groundbreaking research published by BIO5 scientists and their collaborators

 

PubMed Articles

Search form

The aim of this study was to design, develop, and optimize respirable tacrolimus microparticles and nanoparticles and multifunctional tacrolimus lung surfactant mimic particles for targeted dry powder inhalation delivery as a pulmonary nanomedicine. Particles were rationally designed and produced at different pump rates by advanced spray-drying particle engineering design from organic solution in closed mode. In addition, multifunctional tacrolimus lung surfactant mimic dry powder particles were prepared by co-dissolving tacrolimus and lung surfactant mimic phospholipids in methanol, followed by advanced co-spray-drying particle engineering design technology in closed mode. The lung surfactant mimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-[phosphor-rac-1-glycerol]. Laser diffraction particle sizing indicated that the particle size distributions were suitable for pulmonary delivery, whereas scanning electron microscopy imaging indicated that these particles had both optimal particle morphology and surface morphology. Increasing the pump rate percent of tacrolimus solution resulted in a larger particle size. X-ray powder diffraction patterns and differential scanning calorimetry thermograms indicated that spray drying produced particles with higher amounts of amorphous phase. X-ray powder diffraction and differential scanning calorimetry also confirmed the preservation of the phospholipid bilayer structure in the solid state for all engineered respirable particles. Furthermore, it was observed in hot-stage micrographs that raw tacrolimus displayed a liquid crystal transition following the main phase transition, which is consistent with its interfacial properties. Water vapor uptake and lyotropic phase transitions in the solid state at varying levels of relative humidity were determined by gravimetric vapor sorption technique. Water content in the various powders was very low and well within the levels necessary for dry powder inhalation, as quantified by Karl Fisher coulometric titration. Conclusively, advanced spray-drying particle engineering design from organic solution in closed mode was successfully used to design and optimize solid-state particles in the respirable size range necessary for targeted pulmonary delivery, particularly for the deep lung. These particles were dry, stable, and had optimal properties for dry powder inhalation as a novel pulmonary nanomedicine.

Novel advanced spray-dried and co-spray-dried inhalable lung surfactant-mimic phospholipid and poly(ethylene glycol) (PEG)ylated lipopolymers as microparticulate/nanoparticulate dry powders of biodegradable biocompatible lipopolymers were rationally formulated via an organic solution advanced spray-drying process in closed mode using various phospholipid formulations and rationally chosen spray-drying pump rates. Ratios of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine PEG (DPPE-PEG) with varying PEG lengths were mixed in a dilute methanol solution. Scanning electron microscopy images showed the smooth, spherical particle morphology of the inhalable particles. The size of the particles was statistically analyzed using the scanning electron micrographs and SigmaScan® software and were determined to be 600 nm to 1.2 μm in diameter, which is optimal for deep-lung alveolar penetration. Differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) were performed to analyze solid-state transitions and long-range molecular order, respectively, and allowed for the confirmation of the presence of phospholipid bilayers in the solid state of the particles. The residual water content of the particles was very low, as quantified analytically via Karl Fischer titration. The composition of the particles was confirmed using attenuated total-reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy and confocal Raman microscopy (CRM), and chemical imaging confirmed the chemical homogeneity of the particles. The dry powder aerosol dispersion properties were evaluated using the Next Generation Impactor™ (NGI™) coupled with the HandiHaler® dry powder inhaler device, where the mass median aerodynamic diameter from 2.6 to 4.3 μm with excellent aerosol dispersion performance, as exemplified by high values of emitted dose, fine particle fraction, and respirable fraction. Overall, it was determined that the pump rates defined in the spray-drying process had a significant effect on the solid-state particle properties and that a higher pump rate produced the most optimal system. Advanced dry powder inhalers of inhalable lipopolymers for targeted dry powder inhalation delivery were successfully achieved.

BACKGROUND:
Lipid-laden macrophage (LLM) index could be potentially useful in assessing gastroesophageal (GE) reflux and aspiration after lung transplantation (LT) in patients with cystic fibrosis (CF).

METHODS:
A retrospective review of CF patients undergoing LT and/or laparoscopic Nissen fundoplication (LNF) from January 1, 2009, to December 31, 2011, was performed.

RESULTS:
Seventeen CF patients (nine women), mean (± SD) age 27.9 ± 7.5 yr, underwent LT with mean (± SD) pre-transplant FEV(1) of 20.9 ± 5.0% predicted. Seventy percentage (12/17) of patients underwent LNF without complications within 1-2 wk of LT. After LT, but prior to antireflux surgery, there was no significant difference in the mean (± SD) baseline LLM index (154 ± 41 vs. 146 ± 51, p = NS) between patients who were to undergo LNF and patients who did not. After LNF, a significant reduction in the mean (± SD) LLM index occurred following the procedure (154 ± 41-74 ± 54, p < 0.0001) while each patient reported resolution of symptoms of GE reflux, whereas 40% (2/5) undergoing only medical treatment reported resolution of symptoms.

CONCLUSIONS:
Significant reduction in the LLM index occurred after LNF in CF patients after LT that correlated with resolution of clinical symptoms of GE reflux.

The aims of this study were to examine the phase behavior of itraconazole-phenol mixtures and assess the feasibility of topical formulations of itraconazole using eutectic mixture systems. Itraconazole-phenol eutectic mixtures were characterized using differential scanning calorimetry, Fourier transform infrared spectroscopy, (1)H-nuclear magnetic resonance, and powder X-ray diffractometry. The skin permeation rates of itraconazole-phenol eutectic formulations were determined using Franz diffusion cells fitted with excised hairless mouse skins. Itraconazole can form eutectic compounds with phenol, and the hydrogen-bonding interactions between the carbonyl group in the itraconazole and hydroxyl group in phenol play a major role in itraconazole-phenol eutectic formation. Despite its high molecular weight and hydrophobicity, the drug (i.e., itraconazole) can be permeated through excised hairless mouse skins from itraconazole-phenol eutectic formulations. The findings of this study emphasize the capabilities of the topical application of itraconazole via external preparations.

Bronchiolitis obliterans syndrome (BOS) can have either an acute or chronic onset with an abrupt or insidious course. The diagnosis is typically achieved by physiological criteria with development of a sustained decline in expiratory flow rates for at least 3 weeks. We review the rapid development of acute BOS and bronchiectasis after respiratory syncytial virus infection in a lung transplant recipient, who had been doing well with normal pulmonary function for 3 years after lung transplantation.

Airway complications occur frequently after lung transplantation. Bronchial stenosis is the most frequently encountered complication with the most severe form of that being the vanishing bronchus intermedius syndrome (VBIS). This rare disorder has never been reported in the pediatric population. This is the first report of VBIS in a pediatric patient, specifically a 16-yr-old male patient with cystic fibrosis whose course was complicated by a lower airway infection with Aspergillus fumigatus. The VBIS responded to bronchoscopic balloon dilation and placement of an airway stent.

Therapeutic liposomal powders (i.e., lipospheres and proliposomes) for dry powder inhalation aerosol delivery, formulated with phospholipids similar to endogenous lung surfactant, offer unique opportunities in pulmonary nanomedicine while offering controlled release and enhanced stability. Many pulmonary diseases such as lung cancer, tuberculosis (TB), cystic fibrosis (CF), bacterial and fungal lung infections, asthma, and chronic obstructive pulmonary disease (COPD) could greatly benefit from this type of pulmonary nanomedicine approach that can be delivered in a targeted manner by dry powder inhalers (DPIs). These delivery systems may require smaller doses for efficacy, exhibit reduced toxicity, fewer side effects, controlled drug release over a prolonged time period, and increased formulation stability as inhaled powders. This state-of-the-art review presents these novel aspects in depth.

Co-encapsulated doxorubicin (DOX) and curcumin (CUR) in poly(butyl cyanoacrylate) nanoparticles (PBCA-NPs) were prepared with emulsion polymerization and interfacial polymerization. The mean particle size and mean zeta potential of CUR-DOX-PBCA-NPs were 133 ± 5.34 nm in diameter and +32.23 ± 4.56 mV, respectively. The entrapment efficiencies of doxorubicin and curcumin were 49.98 ± 3.32% and 94.52 ± 3.14%, respectively. Anticancer activities and reversal efficacy of the formulations and various combination approaches were assessed using 3-[4,5-dimethylthiazol-2-yl] 2,5-diphenyltetrazolium bromide assay and western blotting. The results showed that the dual-agent loaded PBCA-NPs system had the similar cytotoxicity to co-administration of two single-agent loaded PBCA-NPs (DOX-PBCA-NPs+CUR-PBCA-NPs), which was slightly higher than that of the free drug combination (DOX+CUR) and one free drug/another agent loaded PBCA-NPs combination (DOX+CUR-PBCA-NPs or CUR+DOX-PBCA-NPs). The simultaneous administration of doxorubicin and curcumin achieved the highest reversal efficacy and down-regulation of P-glycoprotein in MCF-7/ADR cell lines, an MCF-7 breast carcer cell line resistant to adriamycin. Multidrug resistance can be enhanced by combination delivery of encapsulated cytotoxic drugs and reversal agents.

OBJECTIVES:
Heart and lung transplant recipients are at risk for invasive fungal infections. This study evaluated the affect of single-agent antifungal prophylaxis with itraconazole on the rate of fungal infections after heart or lung transplant.

MATERIALS AND METHODS:
An observational, retrospective study was performed to evaluate the rate of fungal infections in heart and lung transplant recipients at the University of Kentucky Medical Center over 4.5 years who received itraconazole as a single therapy prophylaxis.

RESULTS:
Eighty-three recipients (42 heart, 41 lung) had an overall fungal infection incidence of 16.9% (14/83), while the incidence was 11.9% for heart recipients (5/42), and 22.0% for lung recipients (9/41).

CONCLUSIONS:
Single-agent use with itraconazole in heart or lung transplant recipients did not affect the rate of fungal infection as compared with previous reports. The incidence of fungal infection increased significantly within 3 months after escalation of immunosuppressant for treatment of acute rejection.

STUDY OBJECTIVES:
The aim of this study was to determine if electrocardiographically synchronized, prospectively triggered multidetector row computed tomography (ECG-MDR-CT) angiography of the aorta can accurately predict the location of ectopic bronchial arteries in patients with cystic fibrosis (CF) with massive hemoptysis prior to bronchial artery embolization (BAE).

DESIGN AND SETTING:
The study was a prospective, observational study from September 1, 2009 to June 30, 2011, conducted at a university hospital with an adult CF center.

PATIENTS:
The study included adult CF patients with massive hemoptysis.

RESULTS:
A total of four adult patients (mean [± SD] age = 31.5 ± 7.9 years) with CF and massive hemoptysis underwent ECG-MDR-CT angiography. The location of the bleeding source was predicted in each case based on lung pathology observed on ECG-MDR-CT angiography. All four patients eventually required BAE without the need for conventional aortograms since the locations of the bronchial arteries were determined prior to the procedure. Review of lung pathology and arterial networks from the ECG-MDR-CT angiography data limited the number of selective catheterizations necessary to complete the procedures. BAE resulted in complete resolution of hemoptysis in three patients and successful mitigation of the bleeding in the fourth patient until lung transplantation was performed 1 week later.

CONCLUSIONS:
ECG-MDR-CT angiography accurately depicted bronchial artery anatomy in CF patients with massive hemoptysis and provided excellent preprocedural planning for BAE. The information provided by ECG-MDR-CT angiography of the aorta prior to conventional angiography decreased the BAE radiation dose and contrast volume and likely reduced table time.

Novel advanced spray-dried inhalable trehalose microparticulate/nanoparticulate powders with low water content were successfully produced by organic solution advanced spray drying from dilute solution under various spray-drying conditions. Laser diffraction was used to determine the volumetric particle size and size distribution. Particle morphology and surface morphology was imaged and examined by scanning electron microscopy. Hot-stage microscopy was used to visualize the presence/absence of birefringency before and following particle engineering design pharmaceutical processing, as well as phase transition behavior upon heating. Water content in the solid state was quantified by Karl Fisher (KF) coulometric titration. Solid-state phase transitions and degree of molecular order were examined by differential scanning calorimetry (DSC) and powder X-ray diffraction, respectively. Scanning electron microscopy showed a correlation between particle morphology, surface morphology, and spray drying pump rate. All advanced spray-dried microparticulate/nanoparticulate trehalose powders were in the respirable size range and exhibited a unimodal distribution. All spray-dried powders had very low water content, as quantified by KF. The absence of crystallinity in spray-dried particles was reflected in the powder X-ray diffractograms and confirmed by thermal analysis. DSC thermal analysis indicated that the novel advanced spray-dried inhalable trehalose microparticles and nanoparticles exhibited a clear glass transition (T(g)). This is consistent with the formation of the amorphous glassy state. Spray-dried amorphous glassy trehalose inhalable microparticles and nanoparticles exhibited vapor-induced (lyotropic) phase transitions with varying levels of relative humidity as measured by gravimetric vapor sorption at 25°C and 37°C.

The study reports on the drug release behavior of a potent synthetic somatostatin analogue, octreotide acetate, from biocompatible and biodegradable microspheres composed of poly-lactic-co-glycolic acid (PLGA) following a single intramuscular depot injection. The serum octreotide levels of three Oakwood Laboratories formulations and one Sandostatin LAR(®) formulation were compared. Three formulations of octreotide acetate-loaded PLGA microspheres were prepared by a solvent extraction and evaporation procedure using PLGA polymers with different molecular weights. The in vivo drug release study was conducted in male Sprague-Dawley rats. Blood samples were taken at predetermined time points for up to 70 days. Drug serum concentrations were quantified using a radioimmunoassay procedure consisting of radiolabeled octreotide. The three octreotide PLGA microsphere formulations and Sandostatin LAR(®) all showed a two-phase drug release profile (i.e., bimodal). The peak serum drug concentration of octreotide was reached in 30 min for all formulations followed by a decline after 6 h. Following this initial burst and decline, a second-release phase occurred after 3 days. This second-release phase exhibited sustained-release behavior, as the drug serum levels were discernible between days 7 and 42. Using pharmacokinetic computer simulations, it was estimated that the steady-state octreotide serum drug levels would be predicted to fall in the range of 40-130 pg/10 μL and 20-100 pg/10 μL following repeat dosing of the Oakwood formulations and Sandostatin LAR(®) every 28 days and every 42 days at a dose of 3 mg/rat, respectively.

The technical advances in microscopy imaging techniques have been applied to assess the fate of drugs for researching respiratory drug delivery in ex vivo and in vivo experiments. Recent developments in optical imaging (confocal microscopy, multi-photon microscopy, fluorescence imaging (FLI) and bioluminescence imaging (BLI)), and in non-optical imaging (magnetic resonance imaging (MRI), computing tomography (CT), positron-emission tomography (PET) and single-photon-emission computed tomography (SPECT)) are presented with their derivative medical devices. Novel microscopy have been utilized to address many biological questions in basic research and are becoming powerful clinical tools for non-invasive objective diagnosis, guided treatment, and monitoring therapies. The goal of this paper is to present recent advances in microscopy imaging techniques and to discuss their novel applications in respiratory drug delivery imaging.

STUDY OBJECTIVES:
The aim of this study was to determine the effects of an antibiotic strategy with intravenous (IV) continuous infusion of a β-lactam (CIBL) antibiotic and high-dose extended-interval (HDEI) tobramycin upon outcomes in patients with cystic fibrosis (CF) requiring invasive mechanical ventilation (IMV) for acute respiratory failure.

DESIGN:
The study was a retrospective review from June 1, 2006, to December 1, 2010, of patients at a university hospital with an adult CF center.

RESULTS:
The study population included adult CF patients requiring IMV. A total of 15 hospitalizations with IMV episodes were reviewed, involving 10 adult (31.4 ± 11.1 years) CF patients with end-stage lung disease (FEV(1) = 23.6 ± 7.8% predicted) and malnutrition (body mass index = 20.5 ± 3.1). Each patient survived to discharge and to follow-up 6 months later without the need for lung transplantation during the study period.

CONCLUSIONS:
A novel antibiotic strategy with a CIBL antibiotic and HDEI tobramycin improved survival in a small cohort of critically ill CF patients with end-stage lung disease and malnutrition requiring IMV.

Long-term outcomes after lung transplantation remain poor mainly to the development of bronchiolitis obliterans syndrome (BOS). Currently, treatment options for BOS are very limited. Strategies to prevent and treat this complication include the use of aerosolized therapy with only cyclosporine used in patients to date. We describe the use of aerosolized tacrolimus in a lung transplant recipient with BOS. The patient demonstrated clinical improvement in functional capacity and oxygenation while receiving tacrolimus by nebulization. Further research is needed to study whether aerosolized tacrolimus is beneficial in lung transplant recipients with BOS.

Controlled release delivery is available for many routes of administration and offers many advantages (as microparticles and nanoparticles) over immediate release delivery. These advantages include reduced dosing frequency, better therapeutic control, fewer side effects, and, consequently, these dosage forms are well accepted by patients. Advances in polymer material science, particle engineering design, manufacture, and nanotechnology have led the way to the introduction of several marketed controlled release products and several more are in pre-clinical and clinical development.

The major objective of this study was: discriminatory assessment of dry powder aerosol performance using standardized entrainment tubes (SETs) and lactose-based formulations with two model drugs. Drug/lactose interactive physical mixtures (2%w/w) were prepared. Their properties were measured: solid-state characterization of phase behavior and molecular interactions by differential scanning calorimetry and X-ray powder diffraction; particle morphology and size by scanning electron microscopy and laser diffraction; aerosol generation by SETs and characterization by twin-stage liquid impinger and Andersen cascade impactor operated at 60 L/min. The fine particle fraction (FPF) was correlated with SET shear stress (tau(s)), using a novel powder aerosol deaggregation equation (PADE). Drug particles were <5 microm in volume diameter with narrow unimodal distribution (Span <1). The lowest shear SET (tau(s) = 0.624 N/m(2)) gave a higher emitted dose (ED approximately 84-93%) and lower FPF (FPF(6.4) approximately 7-25%). In contrast, the highest shear SET (tau(s) = 13.143 N/m(2)) gave a lower ED (ED approximately 75-89%) and higher FPF (FPF(6.4) approximately 15-46%). The performance of disodium cromoglycate was superior to albuterol sulfate at given tau(s), as was milled with respect to sieved lactose monohydrate. Excellent correlation was observed (R(2) approximately 0.9804-0.9998) when pulmonary drug particle release from the surface of lactose carriers was interpreted by PADE linear regression for dry powder formulation evaluation and performance prediction.

The objectives of this study were: systematic investigation of dry powder aerosol performance using standardized entrainment tubes (SETs) and lactose-based formulations with two model drugs; mechanistic evaluation of performance data by powder aerosol deaggregation equation (PADE). The drugs (IPB and FP) were prepared in sieved and milled lactose carriers (2% w/w). Aerosol studies were performed using SETs (shear stresses tau(s) = 0.624-13.143 N/m(2)) by twin-stage liquid impinger, operated at 60 L/min. PADE was applied for formulation screening. Excellent correlation was observed when PADE was adopted correlating FPF to tau(s). Higher tau(s) corresponded to higher FPF values followed by a plateau representing invariance of FPF with increasing tau(s). The R(2) values for PADE linear regression were 0.9905-0.9999. Performance described in terms of the maximum FPF (FPF(max): 15.0-37.6%) resulted in a rank order of ML-B/IPB > ML-A/IPB > SV-A/IPB > SV-B/IPB > ML-B/FP > ML-A/FP > SV-B/FP > SV-A/FP. The performance of IPB was superior to FP in all formulations. The difference in lactose monohydrate carriers was less pronounced for the FPF in IPB than in FP formulations. The novel PADE offers a robust method for evaluating aerodynamic performance of dry powder formulations within a defined tau(s) range.

The relationship between physicochemical properties of drug/carrier blends and aerosol drug powder delivery was evaluated. Four pulmonary drugs each representing the major pulmonary therapeutic classes and with a different pharmacological action were employed. Specifically, the four pulmonary drugs were albuterol sulfate, ipratropium bromide monohydrate, disodium cromoglycate, and fluticasone propionate. The two carrier sugars, each representing a different sugar class, were D-mannitol and trehalose dihydrate. Dry powder aerosols (2%, w/w, drug in carrier) delivered using standardized entrainment tubes (SETs) were characterized by twin-stage liquid impinger. The fine particle fraction (FPF) was correlated with SET shear stress, tau(s), and the maximum fine particle fraction (FPF(max)) was correlated with a deaggregation constant, k(d), by using a powder aerosol deaggregation equation (PADE) by nonlinear and linear regression analyses applied to pharmaceutical inhalation aerosol systems in the solid state. For the four pulmonary drugs representing the major pulmonary therapeutic classes and two chemically distinct pulmonary sugar carriers (non-lactose types) aerosolized with SETs having well-defined shear stress values, excellent correlation and predictive relationships were demonstrated for the novel and rigorous application of PADE for dry powder inhalation aerosol dispersion within a well-defined shear stress range, in the context of pulmonary drug/sugar carrier physicochemical and interfacial properties.

Aerosolization performance of dry powder blends of drugs for the treatment of asthma or chronic obstructive pulmonary diseases have been reported in three previous articles. In vitro aerosolization was performed at defined shear stresses (0.624-13.143 N/m(2)). Formulations were characterized aerodynamically and powder aerosol deaggregation equations (PADE) and corresponding linear regression analyses for pharmaceutical aerosolization were applied. Particle deaggregation is the result of overcoming fundamental forces acting at the particle interface. A new method, PADE, describing dry powder formulation performance in a shear stress range has been developed which may allow a fundamental understanding of interparticulate and surface forces. The application of PADE predicts performance efficiency and reproducibility and supports rational design of dry powder formulations. The analogy of aerosol performance with surface molecular adsorption has important implications. Expressions describing surface adsorption were intended to allow elucidation of mechanisms involving surface heterogeneity, lateral interaction, and multilayer adsorption of a variety of materials. By using a similar expression for drug aerosolization performance, it is conceivable that an analogous mechanistic approach to the evaluation of particulate systems would be possible.

Pages