Bentley A Fane

Bentley A Fane

Professor, Plant Sciences
Professor, Applied BioSciences - GIDP
Professor, Genetics - GIDP
Professor, Immunobiology
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-6634

Work Summary

Upon infection, viruses must transport their genomes into cells and produce progeny, often under a strict time deadline. We study how the viral proteins interact with with each other and with host cell proteins to efficiently accomplish these processes.

Research Interest

Bentley A. Fane, PhD, is a Professor in the School of Plant Sciences, College of Agriculture and Life Sciences and holds a joint appointment in the Department of Immunobiology, Arizona College of Medicine. Dr. Fane has an international reputation for his research into virus structure, assembly and evolution. His research focuses on the viruses of the Microviridae, of which he is considered one of the leading experts. He has been instrumental in defining the biochemical and structural parameters that allow these viruses to replicate and produce progeny in as little as five minutes. The rapid lifecycle has facilitated in depth studies into how viruses evolved resistance mechanism to anti-viral proteins targeting particle assembly.He has published over 60 original research paper in leading scientific journals, including Nature, Molecular Cell, and Journal of Virology, in which his publications on the evolution of resistance mechanisms and kinetic traps have been selected by the journal editors as articles of “significant interest.” He is a frequent presenter at national and international meetings, and has been invited to State of the Art and plenary talks at give the American Society for Virology. He presently serves on the Editorial Boards of two leading virology journals: Virology and the Journal of Virology. At the University of Arizona, Dr. Fane has been actively involved in promoting undergraduate research has been honored with teaching awards on the department, college, and university levels. Keywords: Virus structure and assembly, Viral DNA translocation, Viral evolution

Publications

Bernal, R. A., Hafenstein, S., Esmeralda, R., Fane, B. A., & Rossmann, M. G. (2004). The φX174 protein J mediates DNA packaging and viral attachment to host cells. Journal of Molecular Biology, 337(5), 1109-1122.

PMID: 15046981;Abstract:

Packaging of viral genomes into their respective capsids requires partial neutralization of the highly negatively charged RNA or DNA. Many viruses, including the Microviridae bacteriophages φX174, G4, and α3, have solved this problem by coding for a highly positively charged nucleic acid-binding protein that is packaged along with the genome. The φX174 DNA-binding protein, J, is 13 amino acid residues longer than the α3 and G4 J proteins by virtue of an additional nucleic acid-binding domain at the amino terminus. Chimeric φX174 particles containing the smaller DNA-binding protein cannot be generated due to procapsid instability during DNA packaging. However, chimeric α3 and G4 phages, containing the φX174 DNA-binding protein in place of the endogenous J protein, assemble and are infectious, but are less dense than the respective wild-type species. In addition, host cell attachment and native gel migration assays indicate surface variations of these viruses that are controlled by the nature of the J protein. The structure of α3 packaged with φX174 J protein was determined to 3.5Å resolution and compared with the previously determined structures of φX174 and α3. The structures of the capsid and spike proteins in the chimeric particle remain unchanged within experimental error when compared to the wild-type α3 virion proteins. The amino-terminal region of the φX174 J protein, which is missing from wild-type α3 virions, is mostly disordered in the α3 chimera. The differences observed between solution properties of wild-type φX174, wild-type α3, and α3 chimera, including their ability to attach to host cells, correlates with the degree of order in the amino-terminal domain of the J protein. When ordered, this domain binds to the interior of the viral capsid and, thus, might control the flexibility of the capsid. In addition, the properties of the φX174 J protein in the chimera and the results of mutational analyses suggest that an evolutionary correlation may exist between the size of the J protein and the stoichiometry of the DNA pilot protein H, required in the initial stages of infection. Hence, the function of the J protein is to facilitate DNA packaging, as well as to mediate surface properties such as cell attachment and infection. © 2004 Elsevier Ltd. All rights reserved.

Fane, B., & King, J. (1987). Identification of sites influencing the folding and subunit assembly of the P22 tailspike polypeptide chain using nonsense mutations.. Genetics, 117(2), 157-171.

PMID: 2822533;PMCID: PMC1203193;Abstract:

Amber mutations have been isolated and mapped to more than 60 sites in gene 9 of P22 encoding the thermostable phage tailspike protein. Gene 9 is the locus of over 30 sites of temperature sensitive folding (tsf) mutations, which affect intermediates in the chain folding and subunit association pathway. The phenotypes of the amber missense proteins produced on tRNA suppressor hosts inserting serine, glutamine, tryosine and leucine have been determined at different temperatures. Thirty-three of the sites are tolerant, producing functional proteins with any of the four amino acids inserted at the sites, independent of temperature. Tolerant sites are concentrated at the N-terminal end of the protein indicating that this region is not critical for conformation or function. Sixteen of the sites yield temperature sensitive missense proteins on at least one nonsense suppressing host. Most of the sites with ts phenotypes map to the central region of the gene which is also the region where most of the tsf mutations map. Mutations at 15 of the sites have a lethal phenotype on at least one tRNA suppressor host. For nine out of ten sites tested with at least one lethal phenotype, the primary defect was in the folding or subunit association of the missense polypeptide chain. This analysis of the tailspike missense proteins distinguishes three classes of amino acid sites in the polypeptide chain; residues whose side chains contribute little to folding, subunit assembly or function; residues critical for maintaining the folding and subunit assembly pathway at the high end of the temperature range of phage growth; and residues critical over the entire temperature range of growth.

Doore, S. M., & Fane, B. A. (2015). The Kinetic and Thermodynamic Aftermath of Horizontal Gene Transfer Governs Evolutionary Recovery. Molecular Biology and Evolution, 32(10), 2571-84.

Shared host cells can serve as melting pots for viral genomes, giving many phylogenies a web-like appearance due to horizontal gene transfer. However, not all virus families exhibit web-like phylogenies. Microviruses form three distinct clades, represented by φX174, G4, and α3. Here, we investigate protein-based barriers to horizontal gene transfer between clades. We transferred gene G, which encodes a structural protein, between φX174 and G4, and monitored the evolutionary recovery of the resulting chimeras. In both cases, particle assembly was the major barrier after gene transfer. The G4φXG chimera displayed a temperature-sensitive assembly defect that could easily be corrected through single mutations that promote productive assembly. Gene transfer in the other direction was more problematic. The initial φXG4G chimera required an exogenous supply of both the φX174 major spike G and DNA pilot H proteins. Elevated DNA pilot protein levels may be required to compensate for off-pathway reactions that may have become thermodynamically and/or kinetically favored when the foreign spike protein was present. After three targeted genetic selections, the foreign spike protein was productively integrated into the φX174 background. The first adaption involved a global decrease in gene expression. This was followed by modifications affecting key protein-protein interactions that govern assembly. Finally, gene expression was re-elevated. Although the first selection suppresses nonproductive reactions, subsequent selections promote productive assembly and ultimately viability. However, viable chimeric strains exhibited reduced fitness compared with wild-type. This chimera's path to recovery may partially explain how unusual recombinant viruses could persist long enough to naturally emerge.

Salim, O., Skilton, R. J., Lambden, P. R., Fane, B. A., & Clarke, I. N. (2008). Behind the chlamydial cloak: The replication cycle of chlamydiaphage Chp2, revealed. Virology, 377(2), 440-445.

PMID: 18570973;Abstract:

Studying the replication of the chlamydiaphages presents significant challenges. Their host bacteria, chlamydiae, have a unique obligate intracellular developmental cycle. Using qPCR, immunochemistry, and electron microscopy, the life cycle of chlamydiaphage Chp2 was characterised. Chp2 infection has a dramatic inhibitory effect on bacterial cell division. The RB to EB transition is arrested and RBs enlarge without further division. There is a phase of rapid Chp2 genome replication 36 to 48 h post infection that is coincident with the expression of viral proteins and the replication of the host chromosome. The end stage of Chp2 replication is characterised by the appearance of paracrystalline structures followed by bacterial cell lysis. These data indicate that the Chp2 life cycle is closely coordinated with the developmental cycle of its bacterial host. This is a remarkable adaptation by a microvirus to infect and replicate in a bacterial host that has an obligate intracellular developmental cycle. © 2008 Elsevier Inc. All rights reserved.

Hafenstein, S., & Fane, B. A. (2002). φX174 genome-capsid interactions influence the biophysical properties of the virion: Evidence for a scaffolding-like function for the genome during the final stages of morphogenesis. Journal of Virology, 76(11), 5350-5356.

PMID: 11991963;PMCID: PMC137031;Abstract:

During the final stages of φX174 morphogenesis, there is an 8.5-Å radial collapse of coat proteins around the packaged genome, which is tethered to the capsid's inner surface by the DNA-binding protein. Two approaches were taken to determine whether protein-DNA interactions affect the properties of the mature virion and thus the final stages of morphogenesis. In the first approach, genome-capsid associations were altered with mutant DNA-binding proteins. The resulting particles differed from the wild-type virion in density, native gel migration, and host cell recognition. Differences in native gel migration were especially pronounced. However, no differences in protein stoichiometries were detected. An extragenic second-site suppressor of the mutant DNA-binding protein restores all assayed properties to near wild-type values. In the second approach, φX174 was packaged with foreign, single-stranded, covalently closed, circular DNA molecules identical in length to the φX174 genome. The resulting particles exhibited native gel migration rates that significantly differed from the wild type. The results of these experiments suggest that the structure of the genome and/or its association with the capsid's inner surface may perform a scaffolding-like function during the procapsid-to-virion transition.