Bentley A Fane

Bentley A Fane

Professor, Plant Sciences
Professor, Applied BioSciences - GIDP
Professor, Genetics - GIDP
Professor, Immunobiology
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-6634

Work Summary

Upon infection, viruses must transport their genomes into cells and produce progeny, often under a strict time deadline. We study how the viral proteins interact with with each other and with host cell proteins to efficiently accomplish these processes.

Research Interest

Bentley A. Fane, PhD, is a Professor in the School of Plant Sciences, College of Agriculture and Life Sciences and holds a joint appointment in the Department of Immunobiology, Arizona College of Medicine. Dr. Fane has an international reputation for his research into virus structure, assembly and evolution. His research focuses on the viruses of the Microviridae, of which he is considered one of the leading experts. He has been instrumental in defining the biochemical and structural parameters that allow these viruses to replicate and produce progeny in as little as five minutes. The rapid lifecycle has facilitated in depth studies into how viruses evolved resistance mechanism to anti-viral proteins targeting particle assembly.He has published over 60 original research paper in leading scientific journals, including Nature, Molecular Cell, and Journal of Virology, in which his publications on the evolution of resistance mechanisms and kinetic traps have been selected by the journal editors as articles of “significant interest.” He is a frequent presenter at national and international meetings, and has been invited to State of the Art and plenary talks at give the American Society for Virology. He presently serves on the Editorial Boards of two leading virology journals: Virology and the Journal of Virology. At the University of Arizona, Dr. Fane has been actively involved in promoting undergraduate research has been honored with teaching awards on the department, college, and university levels. Keywords: Virus structure and assembly, Viral DNA translocation, Viral evolution

Publications

Everson, J. S., Garner, S. A., Fane, B., Liu, B. -., Lambden, P. R., & Clarke, I. N. (2002). Biological properties and cell tropism of Chp2, a bacteriophage of the obligate intracellular bacterium Chlamydophila abortus. Journal of Bacteriology, 184(10), 2748-2754.

PMID: 11976304;PMCID: PMC135034;Abstract:

A number of bacteriophages belonging to the Microviridae have been described infecting chlamydiae. Phylogenetic studies divide the Chlamydiaceae into two distinct genera, Chlamydia and Chlamydophila, containing three and six different species, respectively. In this work we investigated the biological properties and host range of the recently described bacteriophage Chp2 that was originally discovered in Chlamydophila abortus. The obligate intracellular development cycle of chlamydiae has precluded the development of quantitative approaches to assay bacteriophage infectivity. Thus, we prepared hybridomas secreting monoclonal antibodies (monoclonal antibodies 40 and 55) that were specific for Chp2. We demonstrated that Chp2 binds both C. abortus elementary bodies and reticulate bodies in an enzyme-linked immunosorbent assay. Monoclonal antibodies 40 and 55 also detected bacteriophage Chp2 antigens in chlamydia-infected eukaryotic cells. We used these monoclonal antibodies to monitor the ability of Chp2 to infect all nine species of chlamydiae. Chp2 does not infect members of the genus Chlamydia (C. trachomatis, C. suis, or C. muridarum). Chp2 can infect C. abortus, C. felis, and C. pecorum but is unable to infect other members of this genus, including C. caviae and C. pneumoniae, despite the fact that these chlamydial species support the replication of very closely related bacteriophages.

Gordon, E. B., & Fane, B. A. (2013). Effects of an early conformational switch defect during φX174 morphogenesis are belatedly manifested late in the assembly pathway. Journal of Virology, 87(5), 2518-2525.

PMID: 23255785;PMCID: PMC3571406;Abstract:

C-terminal, aromatic amino acids in the φX174 internal scaffolding protein B mediate conformational switches in the viral coat protein. These switches direct the coat protein through early assembly. In addition to the aromatic amino acids, two acidic residues, D111 and E113, form salt bridges with basic, coat protein side chains. Although salt bridge formation did not appear to be critical for assembly, the substitution of an aromatic amino acid for D111 produced a lethal phenotype. This side chain is uniquely oriented toward the center of the coat-scaffolding binding pocket, which is heavily dominated by aromatic ring-ring interactions. Thus, the D111Y substitution may restructure pocket contacts. Previously characterized B- mutants blocked assembly before procapsid formation. However, the D111Y mutant produced an assembled particle, which contained the structural and external scaffolding proteins but lacked protein B and DNA. A suppressor within the external scaffolding protein, which mediates the later stages of particle morphogenesis, restored viability. The unique formation of a postprocapsid particle and the novel suppressor may be indicative of a novel B protein function. However, genetic data suggest that the particle represents the delayed manifestation of an early assembly error. This seemingly late-acting defect was rescued by previously characterized suppressors of early, preprocapsid, B- assembly mutations, which act on the level of coat protein flexibility. Likewise, the newly isolated suppressor in the external scaffolding protein also exhibited a global suppressing phenotype. Thus, the off-pathway product isolated from infected cells may not accurately reflect the temporal nature of the initial defect. © 2013, American Society for Microbiology.

Gordon, E. B., Knuff, C. J., & Fane, B. A. (2012). Conformational switch-defective ΦX174 internal scaffolding proteins kinetically trap assembly intermediates before procapsid formation. Journal of Virology, 86(18), 9911-9918.

PMID: 22761377;PMCID: PMC3446603;Abstract:

Conformational switching is an overarching paradigm in which to describe scaffolding protein-mediated virus assembly. However, rapid morphogenesis with small assembly subunits hinders the isolation of early morphogenetic intermediates in most model systems. Consequently, conformational switches are often defined by comparing the structures of virions, procapsids and aberrantly assembled particles. In contrast, øX174 morphogenesis proceeds through at least three preprocapsid intermediates, which can be biochemically isolated. This affords a detailed analysis of early morphogenesis and internal scaffolding protein function. Amino acid substitutions were generated for the six C-terminal, aromatic amino acids that mediate most coat-internal scaffolding protein contacts. The biochemical characterization of mutant assembly pathways revealed two classes of molecular defects, protein binding and conformational switching, a novel phenotype. The conformational switch mutations kinetically trapped assembly intermediates before procapsid formation. Although mutations trapped different particles, they shared common second-site suppressors located in the viral coat protein. This suggests a fluid assembly pathway, one in which the scaffolding protein induces a single, coat protein conformational switch and not a series of sequential reactions. In this model, an incomplete or improper switch would kinetically trap intermediates. © 2012, American Society for Microbiology.

Fane, B. A., Shien, S., & Hayashi, M. (1993). Second-site suppressors of a cold-sensitive external scaffolding protein of bacteriophage φX174. Genetics, 134(4), 1003-1011.

PMID: 8375644;PMCID: PMC1205568;Abstract:

This report describes the isolation and characterization of second-site suppressors of a cold-sensitive (cs) external scaffolding protein, gpD, of bacteriophage φX174. Seven genetically distinct suppressors were isolated. Six of them are located in gene F which encodes the major coat protein of the virus. The seventh is located in gene J which encodes the DNA-binding protein. A subset of the suppressors are trans-acting. These second-site suppressors do not exhibit allele specificity; they are able to suppress defects associated with a csD protein for which they were not selected. The initial characterization of the second-site suppressors and their locations within the major coat protein suggest that the mechanism of suppression may involve both structural and stoichiometric phenomena.

Everson, J. S., Garner, S. A., Lambden, P. R., Fane, B. A., & Clarke, I. N. (2003). Host Range of Chlamydiaphages φCPAR39 and Chp3. Journal of Bacteriology, 185(21), 6490-6492.

PMID: 14563888;PMCID: PMC219413;Abstract:

The host range of φCPAR39 is limited to four Chlamydophila species: C. abortus, C. caviae, C. pecorum, and C. pneumoniae. Chp3 (a newly discovered bacteriophage isolated from C. pecorum) shares three of these hosts (C. abortus, C. caviae, and C. pecorum) but can additionally infect Chlamydophila felis. The ability to support replication was directly correlated with the binding properties of the respective bacteriophages with their host species. Binding studies also show that φCPAR39 and Chp3 use different host receptors to infect the same host cells: cell binding is sensitive to proteinase K treatment, confirming that the chlamydiaphage receptors are proteinaceous in nature.