Clark Lantz

Clark Lantz

Professor, Cellular and Molecular Medicine
Investigator, Center for Toxicology
Professor, Public Health
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-6084

Work Summary

We are interested in the effects of early life exposures to environmental toxicants on lung growth and development. We determine if the early life exposures leads to adult disease.

Research Interest

R. Clark Lantz, PhD Exposure to environmental toxicants alters lung structure and function and leads to chronic lung disease, including cancer. Current investigations are examining the effects of exposure to environmentally relevant doses of arsenic and uranium. Arsenic is a naturally occurring metalloid found in water, soil and air. Exposure to inorganic arsenic occurs worldwide through environmental (contaminated drinking water, air, food and domestic fuel sources) and occupational exposures (smelting industries, pesticide production). In addition to its association with non-malignant diseases, arsenic is of major worldwide health concern because of its carcinogenic potential in humans. Epidemiologic studies have associated arsenic exposure with an increased risk of multiple human cancers including lung, skin, bladder, kidney, liver and stomach cancers. Our current research is focusing on two models to examine the effects of arsenic in the lung. One model relies on exposure to arsenic during lung development, both in utero and postnatally. We have shown that exposure of pregnant female mice and their offspring to 50 or 100 ppb as arsenic in drinking water resulted in altered pulmonary function in 28 day old animals. Airways were more responsive to bronchoconstriction. These changes were specific for exposure during development and were not reversible if arsenic was withdrawn. Associated with these functional changes, arsenic exposure resulted in a dose-dependent increase in airway smooth muscle and alterations in airway connective tissue expression. We are currently analyzing mediators that may be involved in this response to arsenic. In addition, we are beginning investigations into the effect of inhalation of arsenic on lung development. We are also currently using in vitro airway epithelial cell cultures to determine the effects of arsenic on wound repair and epithelial barrier function. In collaboration with Dr. Scott Boitano, we have been able to show that arsenic inhibits wound repair. This may be due in part to arsenic- induced alteration in calcium signaling. We have also been able to show that arsenic alters expression of epithelial junctional proteins and decreases epithelial barrier resistance. Research is also on going to identify protein alterations in lung lining fluid as biomarkers of exposure and effect. This study uses the technology of proteomics to evaluate and identify biomarkers of chronic environmental exposure to arsenic by evaluating large numbers of proteins simultaneously. We are comparing alterations in protein expression in exposed human populations in Arizona and Mexico, human cell lines, and in vivo rodent studies. Patterns of alterations in protein expression, both common and unique to these different test systems, will be identified. Finally, we are evaluating the chemical genotoxicity of uranium. In addition to its radioactive effects, uranium may also have adverse health effects because of its interactions with cellular macromolecules. We have found that uranium causes DNA damage through forming adducts which results in single strand breaks. In addition, uranium also inhibits double strand break DNA repair in airway epithelial cells. Keywords: pulmonary toxicology, arsenic, early life exposures

Publications

Lantz, R. C., Chau, B., Sarihan, P., Witten, M. L., Pivniouk, V. I., & Chen, G. J. (2009). In utero and postnatal exposure to arsenic alters pulmonary structure and function. Toxicology and applied pharmacology, 235(1), 105-13.

In addition to cancer endpoints, arsenic exposures can also lead to non-cancerous chronic lung disease. Exposures during sensitive developmental time points can contribute to the adult disease. Using a mouse model, in utero and early postnatal exposures to arsenic (100 ppb or less in drinking water) were found to alter airway reactivity to methacholine challenge in 28 day old pups. Removal of mice from arsenic exposure 28 days after birth did not reverse the alterations in sensitivity to methacholine. In addition, adult mice exposed to similar levels of arsenic in drinking water did not show alterations. Therefore, alterations in airway reactivity were irreversible and specific to exposures during lung development. These functional changes correlated with protein and gene expression changes as well as morphological structural changes around the airways. Arsenic increased the whole lung levels of smooth muscle actin in a dose dependent manner. The level of smooth muscle mass around airways was increased with arsenic exposure, especially around airways smaller than 100 microm in diameter. This increase in smooth muscle was associated with alterations in extracellular matrix (collagen, elastin) expression. This model system demonstrates that in utero and postnatal exposure to environmentally relevant levels of arsenic can irreversibly alter pulmonary structure and function in the adults.

de la Vega, M. R., Dodson, M., Gross, C., Manzour, H., Lantz, R. C., Chapman, E., Wang, T., Black, S. M., Garcia, J. G., & Zhang, D. D. (2016). Role of Nrf2 and Autophagy in Acute Lung Injury. Current pharmacology reports, 2(2), 91-101.

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the clinical manifestations of severe lung damage and respiratory failure. Characterized by severe inflammation and compromised lung function, ALI/ARDS result in very high mortality of affected individuals. Currently, there are no effective treatments for ALI/ARDS, and ironically, therapies intended to aid patients (specifically mechanical ventilation, MV) may aggravate the symptoms. Key events contributing to the development of ALI/ARDS are: increased oxidative and proteotoxic stresses, unresolved inflammation, and compromised alveolar-capillary barrier function. Since the airways and lung tissues are constantly exposed to gaseous oxygen and airborne toxicants, the bronchial and alveolar epithelial cells are under higher oxidative stress than other tissues. Cellular protection against oxidative stress and xenobiotics is mainly conferred by Nrf2, a transcription factor that promotes the expression of genes that regulate oxidative stress, xenobiotic metabolism and excretion, inflammation, apoptosis, autophagy, and cellular bioenergetics. Numerous studies have demonstrated the importance of Nrf2 activation in the protection against ALI/ARDS, as pharmacological activation of Nrf2 prevents the occurrence or mitigates the severity of ALI/ARDS. Another promising new therapeutic strategy in the prevention and treatment of ALI/ARDS is the activation of autophagy, a bulk protein and organelle degradation pathway. In this review, we will discuss the strategy of concerted activation of Nrf2 and autophagy as a preventive and therapeutic intervention to ameliorate ALI/ARDS.

Zheng, Y., Tao, S., Lian, F., Chau, B. T., Chen, J., Sun, G., Fang, D., Lantz, R. C., & Zhang, D. D. (2012). Sulforaphane prevents pulmonary damage in response to inhaled arsenic by activating the Nrf2-defense response. Toxicology and applied pharmacology, 265(3), 292-9.

Exposure to arsenic is associated with an increased risk of lung disease. Novel strategies are needed to reduce the adverse health effects associated with arsenic exposure in the lung. Nrf2, a transcription factor that mediates an adaptive cellular defense response, is effective in detoxifying environmental insults and prevents a broad spectrum of diseases induced by environmental exposure to harmful substances. In this report, we tested whether Nrf2 activation protects mice from arsenic-induced toxicity. We used an in vivo arsenic inhalation model that is highly relevant to low environmental human exposure to arsenic-containing dusts. Two-week exposure to arsenic-containing dust resulted in pathological alterations, oxidative DNA damage, and mild apoptotic cell death in the lung; all of which were blocked by sulforaphane (SF) in an Nrf2-dependent manner. Mechanistically, SF-mediated activation of Nrf2 alleviated inflammatory responses by modulating cytokine production. This study provides strong evidence that dietary intervention targeting Nrf2 activation is a feasible approach to reduce adverse health effects associated with arsenic exposure.

Olivas-Calderón, E., Recio-Vega, R., Gandolfi, A. J., Lantz, R. C., González-Cortes, T., Gonzalez-De Alba, C., Froines, J. R., & Espinosa-Fematt, J. A. (2015). Lung inflammation biomarkers and lung function in children chronically exposed to arsenic. Toxicology and applied pharmacology, 287(2), 161-7.

Evidence suggests that exposure to arsenic in drinking water during early childhood or in utero has been associated with an increase in respiratory symptoms or diseases in the adulthood, however only a few studies have been carried out during those sensitive windows of exposure. Recently our group demonstrated that the exposure to arsenic during early childhood or in utero in children was associated with impairment in the lung function and suggested that this adverse effect could be due to a chronic inflammation response to the metalloid. Therefore, we designed this cross-sectional study in a cohort of children associating lung inflammatory biomarkers and lung function with urinary As levels. A total of 275 healthy children were partitioned into four study groups according with their arsenic urinary levels. Inflammation biomarkers were measured in sputum by ELISA and the lung function was evaluated by spirometry. Fifty eight percent of the studied children were found to have a restrictive spirometric pattern. In the two highest exposed groups, the soluble receptor for advanced glycation end products' (sRAGE) sputum level was significantly lower and matrix metalloproteinase-9 (MMP-9) concentration was higher. When the biomarkers were correlated to the urinary arsenic species, negative associations were found between dimethylarsinic (DMA), monomethylarsonic percentage (%MMA) and dimethylarsinic percentage (%DMA) with sRAGE and positive associations between %DMA with MMP-9 and with the MMP-9/tissue inhibitor of metalloproteinase (TIMP-1) ratio. In conclusion, chronic arsenic exposure of children negatively correlates with sRAGE, and positively correlated with MMP-9 and MMP-9/TIMP-1 levels, and increases the frequency of an abnormal spirometric pattern. Arsenic-induced alterations in inflammatory biomarkers may contribute to the development of restrictive lung diseases.

Smeester, L., Bommarito, P. A., Martin, E. M., Recio-Vega, R., Gonzalez-Cortes, T., Olivas-Calderon, E., Lantz, R. C., & Fry, R. C. (2017). Chronic early childhood exposure to arsenic is associated with a TNF-mediated proteomic signaling response. Environmental toxicology and pharmacology, 52, 183-187.

Exposure to inorganic arsenic (iAs) in drinking water is a global public health concern and is associated with a range of health outcomes, including immune dysfunction. Children are a particularly sensitive population to the effects of inorganic arsenic, yet the biological mechanisms underlying adverse health outcomes are understudied. Here we used a proteomic approach to examine the effects of iAs exposure on circulating serum protein levels in a cross-sectional children's cohort in Mexico. To identify iAs-associated proteins, levels of total urinary arsenic (U-tAs) and its metabolites were determined and serum proteins assessed for differences in expression. The results indicate an enrichment of Tumor Necrosis Factor-(TNF)-regulated immune and inflammatory response proteins that displayed decreased expression levels in relation to increasing U-tAs. Notably, when analyzed in the context of the proportions of urinary arsenic metabolites in children, the most robust response was observed in relation to the monomethylated arsenicals. This study is among the first serum proteomics assessment in children exposed to iAs.