Craig A Aspinwall

Craig A Aspinwall

Department Head, Chemistry & Biochemistry - Sci
Professor, Chemistry and Biochemistry-Sci
Professor, Chemistry and Biochemistry - Med
Professor, Biomedical Engineering
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 621-6338

Research Interest

Craig A. Aspinwall, PhD, is an Associate Professor of Chemistry and Biochemistry at the University of Arizona. Dr. Aspinwall’s research is focused on the development of novel technology that facilitates the investigation of the molecular underpinnings of disease states. His work encompasses a broad range of scientific disciplines and allows complex biochemical problems to be studied with an increasing level of molecular detail. Dr. Aspinwall has published over 40 original research papers and maintains active collaborations with several international investigators. His research has been funded by the National Institutes of Health, the National Science Foundation, the Arizona Biomedical Research Corporation, and other organizations. He is actively involved in mentoring and education of students and young scientists.

Publications

Aspinwall, C., Cheng, Z., & Aspinwall, C. A. (2006). Nanometre-sized molecular oxygen sensors prepared from polymer stabilized phospholipid vesicles. The Analyst, 131(2).

Nanometre-sized, chemically-stabilized phospholipid vesicle sensors have been developed for detection of dissolved molecular oxygen. Sensors were prepared by forming 150 nm phospholipid vesicles from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or DOPC doped with small (1%) mole percentages of 1,2-dioleoyl-sn-glycero-3-phosphoethanol amine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (NBD-PE). Sensors were stabilized via cross-linking polymerization of hydrophobic methacrylate monomers partitioned into the hydrophobic interior of the DOPC bilayer. The resultant unilamellar, nanometre-sized, polymer-lipid vesicles are spherical, biocompatible and protect sensing components that are loaded into the aqueous interior of the vesicle from interfering species in the exterior environment. For O(2) detection, the oxygen-sensitive fluorescent dye, tris(1,10-phenanthroline)ruthenium(II) chloride (Ru(phen)(3)) was encapsulated into the aqueous interior of the polymerized phospholipid vesicle. NBD-PE was introduced into the phospholipid bilayer of the sensor as a reference dye, allowing ratiometric sensors to be constructed. The resultant sensors show high sensitivity, excellent reversibility and excellent linearity over a physiological range of dissolved oxygen concentrations. These results suggest that polymerized phospholipid vesicle sensors can be used for monitoring intracellular O(2) dynamics.

Carlin, R. T., Sullivan, T., Sherman, J. W., & Aspinwall, C. A. (1993). Asymmetric electrode kinetics induced by concurrent metal-ligand bond dissociation. Electrochimica Acta, 38(7), 927-934.

Abstract:

The electrochemistry of the Cu(II)/Cu(I) couple under nitrogen and carbon monoxide has been investigated in the ambient-temperature molten salt AlCl3:MEICl (MEICl = 1-methyl-3-ethyl-imidazolium chloride) at a 250 μm tungsten disk electrode. Under nitrogen, the couple exhibits reversible electrode kinetics; however, under carbon monoxide, a Cu(I)CO complex is formed and the Cu(II)/Cu(I) couple displays asymmetric, quasi-reversible electrode kinetics. Pulse voltammetric data were fit with a nonlinear least-squares fitting program to give an apparent standard rate constant (k0a) of 1.5 × 10-3 cm s-1 and an anodic transfer coefficient (β) of 0.12-0.17 for the oxidation of the Cu(I)CO complex. The change from reversible to quasi-reversible electrode kinetics is attributed to the concurrent dissociation of the Cu(I)CO bond during the electron transfer process. © 1993.

Muhandiramlage, T. P., Cheng, Z., Roberts, D. L., Keogh, J. P., Hall, H. K., & Aspinwall, C. A. (2012). Determination of pore sizes and relative porosity in porous nanoshell architectures using dextran retention with single monomer resolution and proton permeation. Analytical Chemistry, 84(22), 9754-9761.

PMID: 23083108;PMCID: PMC3502667;Abstract:

Unilamellar phospholipid vesicles prepared using the polymerizable lipid bis-sorbylphosphatidylcholine (bis-SorbPC) yield three-dimensional nanoarchitectures that are highly permeable to small molecules. The resulting porous phospholipid nanoshells (PPNs) are potentially useful for a range of biomedical applications including nanosensors and nanodelivery vehicles for cellular assays and manipulations. The uniformity and size distribution of the pores, key properties for sensor design and utilization, have not previously been reported. Fluorophore-assisted carbohydrate electrophoresis (FACE) was utilized to assess the nominal molecular weight cutoff limit (NMCL) of the PPN via analysis of retained dextran with single monomer resolution. The NMCL of PPNs prepared from pure bis-SorbPC was equivalent to a 1800 Da linear dextran, corresponding to a maximum pore diameter of 2.6 nm. Further investigation of PPNs prepared using binary mixtures of bis-SorbPC and dioleoylphosphatidylcholine (DOPC) revealed a similar NMCL when the bis-SorbPC content exceeded 30 mol %, whereas different size-dependent permeation was observed below this composition. Below 30 mol % bis-SorbPC, dextran retention provided insufficient mass resolution (162 Da) to observe porosity on the experimental time scale; however, proton permeability showed a marked enhancement for bis-SorbPC ≥ 10 mol %. Combined, these data suggest that the NMCL for native pores in bis-SorbPC PPNs results from an inherent property within the lipid assembly that can be partially disrupted by dilution of bis-SorbPC below a critical value for domain formation. Additionally, the analytical method described herein should prove useful for the challenging task of elucidating porosity in a range of three-dimensional nanomaterials. © 2012 American Chemical Society.

Aspinwall, C., Hapuarachchi, S., Janaway, G. A., & Aspinwall, C. A. (2006). Capillary electrophoresis with a UV light-emitting diode source for chemical monitoring of native and derivatized fluorescent compounds. Electrophoresis, 27(20).

We report the utilization of a high power UV light-emitting diode for fluorescence detection (UV-LED-IF) in CE separations. CE-UV-LED-IF allows analysis of a range of environmentally and biologically important compounds, including PAHs and biogenic amines, including neurotransmitters, amino acids, proteins, and peptides, that have been derivatized with UV-excited fluorogenic labels, e.g., o-phthalic dicarboxaldehyde/beta-mercaptoethanol (OPA/beta-ME). The 365 nm UV-LED was used as a stable, low cost source for detection of UV-excited fluorescent compounds. UV-LED-IF was used with both zonal CE separations and MEKC. Native fluorescence detection of PAHs was accomplished with detection limits ranging from 10 nM to 1.3 microM. Detection limits for OPA/beta-ME-labeled glutamic acid and aspartic acid were 11 and 10 nM, respectively, for off-line labeling, and 47 and 47 nM, respectively, for on-line labeling, comparable to UV-laser-based systems. Analysis of OPA/beta-ME-labeled proteins and peptides was performed with 28 and 47 nM detection limits for BSA and myoglobin, respectively.