Cynthia Miranti
Co-Program Leader, Cancer Biology Research Program
Professor, BIO5 Institute
Professor, Cellular and Molecular Medicine
Primary Department
Department Affiliations
(520) 626-2269
Research Interest
Research Interests Our objective is to define how integrin interactions within the tumor microenvironment impact prostate cancer development, hormonal resistance, and metastasis. Our approach is to understand the normal biology of the prostate gland and its microenvironment, as well as the bone environment, to inform on the mechanisms by which tumor cells remodel and use that environment to develop, acquire hormonal resistance, and metastasize. Our research is focused in three primary areas: 1) developing in vitro and in vivo models that recapitulate human disease based on clinical pathology, 2) identifying signal transduction pathway components that could serve as both clinical markers and therapeutic targets, and 3) defining the genetic/epigenetic programming involved in prostate cancer development.


Klionsky, D. J., Abdalla, F. C., Abeliovich, H., Abraham, R. T., Acevedo-Arozena, A., Adeli, K., Agholme, L., Agnello, M., Agostinis, P., Aguirre-Ghiso, J. A., Ahn, H. J., Ait-Mohamed, O., Ait-Si-Ali, S., Akematsu, T., Akira, S., Al-Younes, H. M., Al-Zeer, M. A., Albert, M. L., Albin, R. L., , Alegre-Abarrategui, J., et al. (2012). Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 8(4), 445-544.
BIO5 Collaborators
Walter Klimecki, Cynthia Miranti

In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.

Rivera, V. M., Miranti, C. K., Misra, R. P., Ginty, D. D., Chen, R. H., Blenis, J., & Greenberg, M. E. (1993). A growth factor-induced kinase phosphorylates the serum response factor at a site that regulates its DNA-binding activity. Molecular and cellular biology, 13(10), 6260-73.

A signaling pathway by which growth factors may induce transcription of the c-fos proto-oncogene has been characterized. Growth factor stimulation of quiescent fibroblasts activates a protein kinase cascade that leads to the rapid and transient phosphorylation of the serum response factor (SRF), a regulator of c-fos transcription. The in vivo kinetics of SRF phosphorylation and dephosphorylation parallel the activation and subsequent repression of c-fos transcription, suggesting that this phosphorylation event plays a critical role in the control of c-fos expression. The ribosomal S6 kinase pp90rsk, a growth factor-inducible kinase, phosphorylates SRF in vitro at serine 103, the site that becomes newly phosphorylated upon growth factor stimulation in vivo. Phosphorylation of serine 103 significantly enhances the affinity and rate with which SRF associates with its binding site, the serum response element, within the c-fos promoter. These results suggest a model in which the growth factor-induced phosphorylation of SRF at serine 103 contributes to the activation of c-fos transcription by facilitating the formation of an active transcription complex at the serum response element.

Wang, X., Zhu, J., Zhao, P., Jiao, Y., Xu, N., Grabinski, T., Liu, C., Miranti, C. K., Fu, T., & Cao, B. B. (2007). In vitro efficacy of immuno-chemotherapy with anti-EGFR human Fab-Taxol conjugate on A431 epidermoid carcinoma cells. Cancer biology & therapy, 6(6), 980-7.

The aims of this study were to generate a human Fab fragment against EGFR; conjugate it to paclitaxel (Taxol) as an immuno-chemotherapy agent; and investigate its in vitro anti-tumor efficacy on A431 epidermoid carcinoma cells. A431 cells (EGFR-positive), NIH 3T3 cells (EGFR-negative), and purified EGFR were used for subtractive panning on a human naïve Fab phage library to generate a human anti-EGFR Fab fragment that binds the EGFR extracellular domain in native conformation and subsequently internalizes it into the cytosol. The Fab was then conjugated with the chemotherapeutic Taxol, and cell proliferation inhibition and apoptosis (TUNEL) assays were conducted to determine the effect of this Fab-drug conjugate on A431 cells. The specificity and internalization property of this Fab were characterized by immunoprecipitation, fluorescence staining, flow cytometry, and Hum-Zap assay. The binding affinity to purified EGFR was 30 nM. The Fab-Taxol conjugate inhibited A431 cell proliferation at low concentrations and in a dose-responsive manner; more than 70% inhibition was observed at 52 pM. Furthermore, almost 100% of cells underwent apoptosis after treatment with Fab-Taxol at 26 pM for 48 hours. Our findings suggest that this Fab-Taxol conjugate could be a potential immuno-chemotherapeutic drug for clinical treatment of EGFR-overexpressing tumors.

Bill, H. M., Knudsen, B., Moores, S. L., Muthuswamy, S. K., Rao, V. R., Brugge, J. S., & Miranti, C. K. (2004). Epidermal growth factor receptor-dependent regulation of integrin-mediated signaling and cell cycle entry in epithelial cells. Molecular and cellular biology, 24(19), 8586-99.

Integrin-mediated adhesion of epithelial cells to extracellular matrix (ECM) proteins induces prolonged tyrosine phosphorylation and partial activation of epidermal growth factor receptor (EGFR) in an integrin-dependent and EGFR ligand-independent manner. Integrin-mediated activation of EGFR in epithelial cells is required for multiple signal transduction events previously shown to be induced by cell adhesion to matrix proteins, including tyrosine phosphorylation of Shc, Cbl, and phospholipase Cgamma, and activation of the Ras/Erk and phosphatidylinositol 3'-kinase/Akt signaling pathways. In contrast, activation of focal adhesion kinase, Src, and protein kinase C, adhesion to matrix proteins, cell spreading, migration, and actin cytoskeletal rearrangements are induced independently of EGFR kinase activity. The ability of integrins to induce the activation of EGFR and its subsequent regulation of Erk and Akt activation permitted adhesion-dependent induction of cyclin D1 and p21, Rb phosphorylation, and activation of cdk4 in epithelial cells in the absence of exogenous growth factors. Adhesion of epithelial cells to the ECM failed to efficiently induce degradation of p27, to induce cdk2 activity, or to induce Myc and cyclin A synthesis; subsequently, cells did not progress into S phase. Treatment of ECM-adherent cells with EGF, or overexpression of EGFR or Myc, resulted in restoration of late-G(1) cell cycle events and progression into S phase. These results indicate that partial activation of EGFR by integrin receptors plays an important role in mediating events triggered by epithelial cell attachment to ECM; EGFR is necessary for activation of multiple integrin-induced signaling enzymes and sufficient for early events in G(1) cell cycle progression. Furthermore, these findings suggest that EGFR or Myc overexpression may provoke ligand-independent proliferation in matrix-attached cells in vivo and could contribute to carcinoma development.

Kahn, N. S., Feliu, M., Lord, A. K., Lukason, D., Tam, J. M., Kasperkovitz, P. V., Reedy, J. L., Negoro, P. E., Dagher, Z., Vyas, T. D., Xu, S., Brinkmann, M. M., Ploegh, H. L., Kim, Y., Latz, E., Mansour, M. K., Levitz, S. M., Miranti, C., & Vyas, J. (2018). CD82 controls CpG-dependent TLR9 signaling. PNAS.