Cynthia Miranti

Cynthia Miranti

Professor, Cellular and Molecular Medicine
Chair, Cancer Biology - GIDP
Co-Program Leader, Cancer Biology Research Program
Member of the Graduate Faculty
Professor, BIO5 Institute
Primary Department
Contact
(520) 626-2269

Research Interest

Research Interests Our objective is to define how integrin interactions within the tumor microenvironment impact prostate cancer development, hormonal resistance, and metastasis. Our approach is to understand the normal biology of the prostate gland and its microenvironment, as well as the bone environment, to inform on the mechanisms by which tumor cells remodel and use that environment to develop, acquire hormonal resistance, and metastasize. Our research is focused in three primary areas: 1) developing in vitro and in vivo models that recapitulate human disease based on clinical pathology, 2) identifying signal transduction pathway components that could serve as both clinical markers and therapeutic targets, and 3) defining the genetic/epigenetic programming involved in prostate cancer development.

Publications

Miranti, C. K., Ohno, S., & Brugge, J. S. (1999). Protein kinase C regulates integrin-induced activation of the extracellular regulated kinase pathway upstream of Shc. The Journal of biological chemistry, 274(15), 10571-81.

Adhesion of fibroblasts to extracellular matrices via integrin receptors is accompanied by extensive cytoskeletal rearrangements and intracellular signaling events. The protein kinase C (PKC) family of serine/threonine kinases has been implicated in several integrin-mediated events including focal adhesion formation, cell spreading, cell migration, and cytoskeletal rearrangements. However, the mechanism by which PKC regulates integrin function is not known. To characterize the role of PKC family kinases in mediating integrin-induced signaling, we monitored the effects of PKC inhibition on fibronectin-induced signaling events in Cos7 cells using pharmacological and genetic approaches. We found that inhibition of classical and novel isoforms of PKC by down-regulation with 12-0-tetradeconoyl-phorbol-13-acetate or overexpression of dominant-negative mutants of PKC significantly reduced extracellular regulated kinase 2 (Erk2) activation by fibronectin receptors in Cos7 cells. Furthermore, overexpression of constitutively active PKCalpha, PKCdelta, or PKCepsilon was sufficient to rescue 12-0-tetradeconoyl-phorbol-13-acetate-mediated down-regulation of Erk2 activation, and all three of these PKC isoforms were activated following adhesion. PKC was required for maximal activation of mitogen-activated kinase kinase 1, Raf-1, and Ras, tyrosine phosphorylation of Shc, and Shc association with Grb2. PKC inhibition does not appear to have a generalized effect on integrin signaling, because it does not block integrin-induced focal adhesion kinase or paxillin tyrosine phosphorylation. These results indicate that PKC activity enhances Erk2 activation in response to fibronectin by stimulating the Erk/mitogen-activated protein kinase pathway at an early step upstream of Shc.

Uchtmann, K., Park, E. R., Bergsma, A., Segula, J., Edick, M. J., & Miranti, C. K. (2015). Homozygous loss of mouse tetraspanin CD82 enhances integrin αIIbβ3 expression and clot retraction in platelets. Experimental cell research, 339(2), 261-9.

Integrin αIIbβ3 is critical for platelet-mediated blood clotting. Tetraspanins are well-established regulators of integrins and genetic loss of tetraspanin CD151 or TSSC6 in mice leads to increased bleeding due to inadequate integrin αIIbβ3 outside-in signaling. Conversely, mild but enhanced integrin αIIbβ3 activation and hyperaggregation is observed in CD9 and CD63 null mice respectively. CD82 is reportedly expressed in platelets; however its function is unknown. Using genetically engineered CD82 null mice, we investigated the role of the tetraspanin CD82 in platelet activation. Loss of CD82 resulted in reduced bleed times in vivo. CD82 was present on the surface of both human and mouse platelets, and its levels did not change upon platelet activation or degranulation. No differences in platelet activation, degranulation, or aggregation in response to ADP or collagen were detected in CD82 null mice. However, the kinetics of clot retraction was enhanced, which was intrinsic to the CD82-null platelets. Integrin αIIbβ3 surface expression was elevated on the platelets from CD82 null mice and they displayed enhanced adhesion and tyrosine kinase signaling on fibrinogen. This is the first report on CD82 function in platelets; which we found intrinsically modulates clot retraction, integrin αIIbβ3 expression, cell adhesion, and tyrosine signaling.

Guitart, X., Thompson, M. A., Mirante, C. K., Greenberg, M. E., & Nestler, E. J. (1992). Regulation of cyclic AMP response element-binding protein (CREB) phosphorylation by acute and chronic morphine in the rat locus coeruleus. Journal of neurochemistry, 58(3), 1168-71.

Previous studies have implicated adaptations in the cyclic AMP system in mechanisms of opiate tolerance, dependence, and withdrawal in the rat locus coeruleus. It has been speculated that such adaptations may occur at the level of gene expression. To understand better the mechanism by which opiates produce these intracellular adaptations, we studied morphine regulation of the state of phosphorylation of cyclic AMP response element-binding protein (CREB), a transcription factor that mediates some of the effects of the cyclic AMP system on gene expression. We show here, by use of a back phosphorylation and immunoprecipitation procedure, that acute morphine decreases the state of phosphorylation of CREB, an effect that becomes completely attenuated after chronic morphine administration. In contrast, acute precipitation of opiate withdrawal, via administration of an opiate receptor antagonist, increases the phosphorylation state of CREB. Such regulation of CREB phosphorylation could be part of the molecular pathway by which opiates produce changes in gene expression that lead to addiction.

Miranti, C., & Puck, T. T. (1990). Gene regulation in reverse transformation: cyclic AMP-induced actin homolog in CHO cells. Somatic cell and molecular genetics, 16(1), 67-78.

Reverse transformation (RT) presents a challenge in understanding of the role of protein-genome interaction in regulating gene expression in normal and transformed cells. Early during RT of CHO-K1 cells by cyclic AMP a new protein, mol wt = 43,000 and pI = 5.3 +/- 0.2, was rapidly and specifically induced. This cAMP-induced protein (CIP) is a phosphorylated actin homolog. Induction required new protein synthesis. Actinomycin D treatment failed to inhibit CIP induction, suggesting the existence of an untranslated or sequestered mRNA in untreated cells. Expression of CIP was not dependent upon cell shape or cytoskeletal integrity as are other steps in RT. CIP was detectable only in cAMP-treated cells, whether transformed or nontransformed, and cAMP treatment inhibited growth of both cell types. CIP was associated with soluble cell fractions and not with F-actin. We propose that CIP plays an early role in RT, that is necessary but not sufficient for the complete RT process, and that it participates in the cAMP signaling pathway of cells through changes in the cytoskeleton. This pathway inhibits cell growth as required in the differentiated phenotype. A molecular model is presented for the RT reaction in CHO-K1, which also explains cAMP effects on transformed cells such as the S49 lymphoma and other malignancies.

Miranti, C. K. (2009). Controlling cell surface dynamics and signaling: how CD82/KAI1 suppresses metastasis. Cellular signalling, 21(2), 196-211.

The recent identification of metastasis suppressor genes, uniquely responsible for negatively controlling cancer metastasis, are providing inroads into the molecular machinery involved in metastasis. While the normal function of a few of these genes is known; the molecular events associated with their loss that promotes tumor metastasis is largely not understood. KAI1/CD82, whose loss is associated with a wide variety of metastatic cancers, belongs to the tetraspanin family. Despite intense scrutiny, many aspects of how CD82 specifically functions as a metastasis suppressor and its role in normal biology remain to be determined. This review will focus on the molecular events associated with CD82 loss, the potential impact on signaling pathways that regulate cellular processes associated with metastasis, and its relationship with other metastasis suppressor genes.