Eric H Lyons
Advisor, CALS' Office of the Assoc Dean - Research for Cyber Initiatives in Agricultural / Life - Vet Science
Associate Professor, Agricultural-Biosystems Engineering
Associate Professor, BIO5 Institute
Associate Professor, Genetics - GIDP
Associate Professor, Plant Science
Primary Department
Department Affiliations
(520) 626-5070
Research Interest
Eric Lyons, PhD is an assistant professor at the University of Arizona School of Plant Sciences. Dr. Lyons is internationally known for his work in understanding the evolution, structure, and dynamics of genomes. Core to his research activities is the development of software systems for managing and analyzing genomic data and cyberinfrastructure for the life sciences.Dr. Lyons has published over 30 original research papers and 5 book chapters, many in collaboration with investigators from around the world. He is a frequent presenter at national and international meetings, and has been invited to teach workshops on the analysis of genomic data to plant, vertebrate, invertebrate, microbe, and health researchers.Prior to joining the faculty in the School of Plant Sciences, Dr. Lyons worked with the iPlant Collaborative developing cyberinfrastructure, and managing its scientific activities. In addition, he spent five years working in industry at biotech, pharmaceutical, and software companies. Dr. Lyons’ core software system for managing and analyzing genomic data is called CoGe, and is available for use at http://genomevolution.org

Publications

Banks, J. A., Nishiyama, T., Hasebe, M., Bowman, J. L., Gribskov, M., DePamphilis, C., Albert, V. A., Aono, N., Aoyama, T., Ambrose, B. A., Ashton, N. W., Axtell, M. J., Barker, E., Barker, M. S., Bennetzen, J. L., Bonawitz, N. D., Chapple, C., Cheng, C., Gustavo, L., , Dacre, M., et al. (2011). The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science, 332(6032), 960-963.
BIO5 Collaborators
Michael S Barker, Eric H Lyons

PMID: 21551031;PMCID: PMC3166216;Abstract:

Vascular plants appeared ∼410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in posttranscriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the trans-acting small interfering RNA pathway, and extensive RNA editing of organellar genes.

Chalhoub, B., Denoeud, F., Liu, S., Parkin, I. A., Tang, H., Wang, X., Chiquet, J., Belcram, H., Tong, C., Samans, B., Corréa, M., Da Silva, C., Just, J., Falentin, C., Koh, C. S., Le Clainche, I., Bernard, M., Bento, P., Noel, B., , Labadie, K., et al. (2014). Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science (New York, N.Y.), 345(6199), 950-3.

Oilseed rape (Brassica napus L.) was formed ~7500 years ago by hybridization between B. rapa and B. oleracea, followed by chromosome doubling, a process known as allopolyploidy. Together with more ancient polyploidizations, this conferred an aggregate 72× genome multiplication since the origin of angiosperms and high gene content. We examined the B. napus genome and the consequences of its recent duplication. The constituent An and Cn subgenomes are engaged in subtle structural, functional, and epigenetic cross-talk, with abundant homeologous exchanges. Incipient gene loss and expression divergence have begun. Selection in B. napus oilseed types has accelerated the loss of glucosinolate genes, while preserving expansion of oil biosynthesis genes. These processes provide insights into allopolyploid evolution and its relationship with crop domestication and improvement.

Nelson, A. D., Devisetty, U. K., Palos, K., Haug-Baltzell, A. K., Lyons, E., & Beilstein, M. A. (2017). Evolinc: A tool for the identification and evolutionary comparison of long intergenic non-coding RNAs. Frontiers in genetics, 8, 52.
Frank, D. N., Spiegelman, G. B., Davis, W., Wagner, E., Lyons, E., & Pace, N. R. (2003). Culture-independent molecular analysis of microbial constituents of the healthy human outer ear. Journal of Clinical Microbiology, 41(1), 295-303.

PMID: 12517864;PMCID: PMC149572;Abstract:

Molecular-phylogenetic sequence analyses have provided a new perspective on microbial communities by allowing the detection and identification of constituent microorganisms in the absence of cultivation. In this study we used broad-specificity amplification of ribosomal DNA (rDNA) genes to survey organisms present in the human outer ear canal. Samples were obtained from 24 individuals, including members of three extended families, in order to survey the resident microbiota and to examine microbial population structures in individuals related by familial or household associations. To examine the stability of the microbial populations, one individual was sampled four times and another twice over a 14-month period. We found that a distinct set of microbial types was present in the majority of the subjects sampled. The two most prevalent rDNA sequence types that were identified in multiple individuals corresponded closely to those of Alloiococcus otitis and Corynebacterium otitidis, commonly thought to be associated exclusively with infections of the middle ear. Our results suggest, therefore, that the outer ear canal may serve as a reservoir for normally commensal microbes that can contribute to pathogenesis upon introduction into the middle ear. Alternatively, culture analyses of diseases of the middle ear may have been confounded by these contaminating commensal organisms.

Jaratlerdsiri, W., Jaratlerdsiri, W., Deakin, J., Deakin, J., Godinez, R. M., Godinez, R. M., Shan, X., Shan, X., Peterson, D. G., Peterson, D. G., Marthey, S., Marthey, S., Lyons, E., Lyons, E., McCarthy, F. M., McCarthy, F. M., Isberg, S. R., Isberg, S. R., Higgins, D. P., , Higgins, D. P., et al. (2014). Comparative genome analyses reveal distinct structure in the saltwater crocodile MHC. PloS one, 9, e114631.