Gene E Alexander

Gene E Alexander

Professor, Psychology
Professor, Psychiatry
Professor, Evelyn F Mcknight Brain Institute
Professor, Neuroscience - GIDP
Professor, Physiological Sciences - GIDP
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-1704

Work Summary

My research focuses on advancing our understanding of how and why aging impacts the brain and associated cognitive abilities. I use neuroimaging scans of brain function and structure together with measures of cognition and health status to identify those factors that influence brain aging and the risk for Alzheimer's disease. My work also includes identifying how health and lifestyle interventions can help to delay or prevent the effects of brain aging and Alzheimer's disease.

Research Interest

Dr. Alexander is Professor in the Departments of Psychology and Psychiatry, the Evelyn F. McKnight Brain Institute, and the Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs of the University of Arizona. He is Director of the Brain Imaging, Behavior and Aging Lab, a member of the Internal Scientific Advisory Committee for the Arizona Alzheimer’s Consortium, and a member of the Scientific Advisory Board for the Arizona Evelyn F. McKnight Brain Institute. He received his post-doctoral training in neuroimaging and neuropsychology at Columbia University Medical Center and the New York State Psychiatric Institute. Prior to coming to Arizona, Dr. Alexander was Chief of the Neuropsychology Unit in the Laboratory of Neurosciences in the Intramural Research Program at the National Institute on Aging. Dr. Alexander has over 20 years experience as a neuroimaging and neuropsychology researcher in the study of aging and age-related neurodegenerative disease. He is a Fellow of the Association for Psychological Science and the American Psychological Association (Division 40) Society for Clinical Neuropsychology. His research has been supported by grants from the National Institutes of Health, the Evelyn F. McKnight Brain Research Foundation, the State of Arizona, and the Alzheimer’s Association. He uses structural and functional magnetic resonance imaging (MRI) and positron emission tomography (PET) combined with measures of cognition and behavior to investigate the effects of multiple health and lifestyle factors on the brain changes associated with aging and the risk for Alzheimer’s disease. Keywords: "Aging/Age-Related Disease", "Brain Imaging", "Cognitive Neurosicence", "Alzheimer's Disease"

Publications

Chen, K., Langbaum, J. B., Fleisher, A. S., Ayutyanont, N., Reschke, C., Lee, W., Liu, X., Bandy, D., Alexander, G. E., Thompson, P. M., Foster, N. L., Harvey, D. J., J., M., Koeppe, R. A., Jagust, W. J., Weiner, M. W., & Reiman, E. M. (2010). Twelve-month metabolic declines in probable Alzheimer's disease and amnestic mild cognitive impairment assessed using an empirically pre-defined statistical region-of-interest: Findings from the Alzheimer's Disease Neuroimaging Initiative. NeuroImage, 51(2), 654-664.

PMID: 20202480;PMCID: PMC2856742;Abstract:

Alzheimer's disease (AD) is characterized by specific and progressive reductions in fluorodeoxyglucose positron emission tomography (FDG PET) measurements of the cerebral metabolic rate for glucose (CMRgl), some of which may precede the onset of symptoms. In this report, we describe twelve-month CMRgl declines in 69 probable AD patients, 154 amnestic mild cognitive impairment (MCI) patients, and 79 cognitively normal controls (NCs) from the AD Neuroimaging Initiative (ADNI) using statistical parametric mapping (SPM). We introduce the use of an empirically pre-defined statistical region-of-interest (sROI) to characterize CMRgl declines with optimal power and freedom from multiple comparisons, and we estimate the number of patients needed to characterize AD-slowing treatment effects in multi-center randomized clinical trials (RCTs). The AD and MCI groups each had significant twelve-month CMRgl declines bilaterally in posterior cingulate, medial and lateral parietal, medial and lateral temporal, frontal and occipital cortex, which were significantly greater than those in the NC group and correlated with measures of clinical decline. Using sROIs defined based on training sets of baseline and follow-up images to assess CMRgl declines in independent test sets from each patient group, we estimate the need for 66 AD patients or 217 MCI patients per treatment group to detect a 25% AD-slowing treatment effect in a twelve-month, multi-center RCT with 80% power and two-tailed alpha=0.05, roughly one-tenth the number of the patients needed to study MCI patients using clinical endpoints. Our findings support the use of FDG PET, brain-mapping algorithms and empirically pre-defined sROIs in RCTs of AD-slowing treatments. © 2010 Elsevier Inc.

Ibáñez, V., Pietrini, P., Furey, M. L., Alexander, G. E., Millet, P., Bokde, A. L., Teichberg, D., Schapiro, M. B., Horwitz, B., & Rapoport, S. I. (2004). Resting state brain glucose metabolism is not reduced in normotensive healthy men during aging, after correction for brain atrophy. Brain Research Bulletin, 63(2), 147-154.

PMID: 15130704;Abstract:

Studies using positron emission tomography (PET) have reported that global and regional values for cerebral blood flow and metabolic rates for glucose (CMRglc and rCMRglc) decline with age in humans. We wished to determine if such decreases could have reflected a partial volume effect (PVE) of cerebral atrophy in the elderly, rather than "intrinsic" reductions per gram brain. We used PET to compare rCMRglc, before and after correcting for the PVE, between 13 healthy older men (aged: 55-82 years) and 11 healthy young men (aged: 22-34 years). PET was performed with 18F-fluoro-2-deoxy-D-glucose while the subjects were in the "resting" state (eyes covered and ears plugged with cotton). The PET scans were normalized to a common brain volume after superimposing them on the subjects' tissue segmented magnetic resonance scans. Analysis showed that rCMRglc in the absence of a PVE correction was significantly less in the older group in insular, frontal, superior temporal cortical, and thalamic regions. Statistical significant differences in rCMRglc, however, were absent after the PVE correction. Thus, statistically significant age reductions in regional brain glucose metabolism, corrected for brain atrophy, are not detectable in healthy normotensive men scanned while in the resting state. © 2004 Elsevier Inc. All rights reserved.

Furey, M. L., Pietrini, P., Alexander, G. E., Mentis, M. J., Szczepanik, J., Shetty, U., Greig, N. H., Holloway, H. W., Schapiro, M. B., & Freo, U. (2000). Time course of pharmacodynamic and pharmacokinetic effects of physostigmine assessed by functional brain imaging in humans. Pharmacology Biochemistry and Behavior, 66(3), 475-481.

PMID: 10899358;Abstract:

In imaging studies of brain functions using pharmacological probes, identification of the time point at which central effects of intravenously infused drugs become stable is crucial to separate the effects of experimental variables from the concomitant changes in drug effects over time. We evaluated the time courses of the pharmacokinetics and pharmacodynamics, including butyrylcholinesterase inhibition and central neural responses, of physostigmine in healthy young subjects. Ten positron emission tomography (PET) scans that alternated between a rest condition (eyes open, ears unplugged) and a working memory for faces (WM) task were acquired in healthy subjects. Subjects in the drug group received a saline infusion for the first two scans, providing a baseline measure, then received an infusion of physostigmine for all subsequent scans. Subjects in the control group received a placebo infusion of saline for all scans. Physostigmine plasma levels and percent butyrylcholinesterase inhibition increased over time (p 0.0001), and both became stable by 40 min. Physostigmine decreased reaction time (RT) (p = 0.0005), and this effect was detected after 20 min of infusion and stable thereafter. Physostigmine also decreased regional cerebral blood flow (rCBF) in right prefrontal cortex during task (p = 0.0002), and this effect was detected after 40 min of infusion and stable thereafter. No change in RT or rCBF was observed in the control group. These results indicate that a 40-min infusion of physostigmine was necessary to obtain stable central effects. More generally, we have demonstrated that experimental effects can vary with time, especially during the initial phases of a drug infusion, indicating that it is critical that these changes are controlled. Copyright (C) 2000 Elsevier Science Inc.

Chen, K., Ayutyanont, N., Langbaum, J. B., Fleisher, A. S., Reschke, C., Lee, W., Liu, X., Bandy, D., Alexander, G. E., Thompson, P. M., Shaw, L., Trojanowski, J. Q., Jack, C. R., Landau, S. M., Foster, N. L., Harvey, D. J., Weiner, M. W., Koeppe, R. A., Jagust, W. J., & Reiman, E. M. (2011). Characterizing Alzheimer's disease using a hypometabolic convergence index. NeuroImage, 56(1), 52-60.

PMID: 21276856;PMCID: PMC3066300;Abstract:

This article introduces a hypometabolic convergence index (HCI) for the assessment of Alzheimer's disease (AD); compares it to other biological, cognitive and clinical measures; and demonstrates its promise to predict clinical decline in mild cognitive impairment (MCI) patients using data from the AD Neuroimaging Initiative (ADNI). The HCI is intended to reflect in a single measurement the extent to which the pattern and magnitude of cerebral hypometabolism in an individual's fluorodeoxyglucose positron emission tomography (FDG-PET) image correspond to that in probable AD patients, and is generated using a fully automated voxel-based image-analysis algorithm. HCIs, magnetic resonance imaging (MRI) hippocampal volume measurements, cerebrospinal fluid (CSF) assays, memory test scores, and clinical ratings were compared in 47 probable AD patients, 21 MCI patients who converted to probable AD within the next 18. months, 76 MCI patients who did not, and 47 normal controls (NCs) in terms of their ability to characterize clinical disease severity and predict conversion rates from MCI to probable AD. HCIs were significantly different in the probable AD, MCI converter, MCI stable and NC groups (p=9e-17) and correlated with clinical disease severity. Using retrospectively characterized threshold criteria, MCI patients with either higher HCIs or smaller hippocampal volumes had the highest hazard ratios (HRs) for 18-month progression to probable AD (7.38 and 6.34, respectively), and those with both had an even higher HR (36.72). In conclusion, the HCI, alone or in combination with certain other biomarker measurements, has the potential to help characterize AD and predict subsequent rates of clinical decline. More generally, our conversion index strategy could be applied to a range of imaging modalities and voxel-based image-analysis algorithms. © 2011 Elsevier Inc.

Dani, A., Pietrini, P., Furey, M. L., Alexander, G. E., Horwitz, B., Mentis, M. J., & Schapiro, M. B. (1997). Cerebral glucose metabolic dysfunction in relation to dementia in down syndrome: Potential implications for therapeutic intervention. NeuroImage, 5(4 PART II), S337.