Gene A Giacomelli

Gene A Giacomelli

Professor, Agricultural-Biosystems Engineering
Professor, Applied BioSciences - GIDP
Professor, Plant Science
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-9566

Work Summary

Gene Giacmomelli's research focus includes controlled environment plant productions systems [greenhouse and growth chamber] research, design, development and applications, with emphases on: crop production systems, nutrient delivery systems, environmental control, mechanization, and labor productivity.

Research Interest

Gene Giacomelli, PhD, is the director of the CEAC, or interdisciplinary education, research and outreach program for greenhouse and other advanced technology systems. Here at the University of Arizona, he teaches Controlled Environment Systems, which is an introduction to the technical aspects of greenhouse design, environmental control, nutrient delivery systems, hydroponic crop production, intensive field production systems, and post-harvest handling and storage of crops. His research interests include controlled environment plant productions systems (greenhouse and growth chamber) research, design, development and applications, with emphases on: crop production systems, nutrient delivery systems, environmental control, mechanization, and labor productivity.

Publications

Giniger, M. S., McAvoy, R. J., Giacomelli, G. A., & Janes, H. W. (1988). COMPUTER SIMULATION OF A SINGLE TRUSS TOMATO CROPPING SYSTEM.. Transactions of the American Society of Agricultural Engineers, 31(4), 1176-1179.

Abstract:

The development of a computer simulation model for greenhouse tomato crop management is discussed. The management model, based on a crop production model, will determine a production schedule designed to provide a continuous yield, optimize greenhouse space utilization, and predict production rates throughout the year.

Giacomelli, G. A., Ting, K. C., & Panigrahi, S. (1988). Solar PAR vs. solar total radiation transmission in a greenhouse. Transactions of the American Society of Agricultural Engineers, 31(5), 1540-1543.

Abstract:

The availability of solar radiation in a bow-type, air-inflated, double polyethylene covered greenhouse was studied. Solar total radiation (0.285 to 2.8 μm waveband) transmittance and the transmittance of photosynthetically active radiation (solar PAR, 0.4 to 0.7 μm) were compared. The comparisons were reported for measurements made both at the glazing and the plant canopy levels. A relationship was previously determined for the available solar total radiation (W m-2) and solar PAR (μmol s-1 m-2), transmitted through the atmosphere. This report focuses on the effects of glazing and structure on transmitting ambient solar radiation and the development of a relationship for transmittance of solar total radiation (W m-2) versus solar PAR (μmol s-1 m-2) between the two wavebands.

Guerrero, F. V., Kacira, M., Fitz-Rodriguez, E., Linker, R., Arbel, A., Kubota, C., & Giacomelli, G. A. (2010). Developing a control strategy for greenhouses equipped with natural ventilation and variable pressure fogging: Evapotranspiration models and simulated comparison of fixed and variable pressure fog cooling. American Society of Agricultural and Biological Engineers Annual International Meeting 2010, 6, 4513-4527.

Abstract:

Previous studies on high pressure fogging have shown their capability for maintaining temperature and humidity in acceptable ranges most of the year in greenhouses located in semiarid regions. The heat load, and therefore cooling demand, inside the greenhouse vary during the day and throughout the seasons. Thus, it may be advantageous to use a variable pressure fogging (VPF) system, where specific fog rates can be supplied based on the cooling demand. However, the absence of effective cooling strategies is one of the drawbacks limiting the extensive use of these systems. A well defined control strategy should account for plant's contribution on cooling and humidification in the control algorithm. This study compared the accuracy of three evapotranspiration models using measured values from greenhouse grown pepper plants. The results showed that Stanghellini model (R2=0.93) predicted measured evapotranspiration rates slightly better than Penman-Monteith (R2=0.84) and Takakura models (R2=0.79). Furthermore, a computer simulation was developed to compare a proposed control algorithm for VPF to a typical on/off fixed pressure fogging system based on vapor pressure deficit (VPD). Results showed that VPD based fixed pressure fogging strategy consumed more water and energy compared to the VPF system. Cycling of the pump was smaller and higher stability of temperature and relative humidity were achieved by the operation of the VPF system.

Ting, K. C., Ling, P. P., & Giacomelli, G. A. (1997). Sustaining human lives in outer space. Resource: Engineering and Technology for Sustainable World, 4(3), 7-8.

Abstract:

A mission aboard a space vehicle to other planets takes time. To sustain life, the space crew's three basic needs including air, water and food need to be replenished. Today, researchers are studying alternatives to meet these needs considering the special circumstances related to space travel. Efforts to develop bioregenerative life support systems (BLSS) are underway. Over the years, NASA has been providing leadership in developing BLSS.

Giacomelli, G. A. (2011). Simulated performance of a greenhouse cooling control strategy with natural ventilation and fog cooling.. Not applicable.

Simulated performance of a greenhouse cooling control strategy with natural ventilation and fog cooling. Villarreal-Guerrero, F., M. Kacira, e. Fitz-Rodriguez, R. Linker, C. Kubota, G. giacomelli, A. Arbel. 2011. Simulated performance of a greenhouse cooling control strategy with natural ventilation and fog cooling. Biosystems Engineering. Published.