Judith Bronstein

Judith Bronstein

Professor, Ecology and Evolutionary Biology
Professor, Entomology / Insect Science - GIDP
University Distinguished Professor
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Contact
(520) 621-3534

Research Interest

Judith L. Bronstein is University Distinguished Professor of Ecology and Evolutionary Biology, with a joint appointment in the Department of Entomology. Dr. Bronstein’s large, active lab focuses on the ecology and evolution of interspecific interactions, particularly on the poorly-understood, mutually beneficial ones (mutualisms). Using a combination of field observations, experiments, and theory, they are examining how population processes, abiotic conditions, and the community context determine net effects of interactions for the fitness of each participant species. Specific conceptual areas of interest include: (i) conflicts of interest between mutualists and their consequences for the maintenance of beneficial outcomes; (ii) the causes and consequences of "cheating" within mutualism; (iii) context-dependent outcomes in both mutualisms and antagonisms; and (iv) anthropogenic threats to mutualisms. In addition, she is Editor-in-Chief of The American Naturalist, a leading international journal in ecology and evolution. An award-winning instructor, Dr. Bronstein teaches at both the undergraduate and graduate levels; she has also run a large training grant administered by BIO5 that places life sciences graduate students in public school classrooms around Tucson. She serves in leadership positions in the College of Science (including chairing the College of Science Promotion and Tenure Committee for 2013), at the University, and at the Arizona-Sonora Desert Museum, where she is a member of the Board of Trustees and Chair of the Science and Conservation Council.

Publications

Bronstein, J., & Lanan, M. (2013). An ant's eye view of an ant-plant protection mutualism. Oecologia, 172, 779-790.
Anstatt, M. -., Bronstein, J. L., & Hossaert-McKey, M. (1996). Resource allocation: A conflict in the fig/fig wasp mutualism?. Journal of Evolutionary Biology, 9(4), 417-428.

Abstract:

Conflicts of interest are omnipresent between mutualist species. In the monoecious fig/pollinator wasp mutualism, each female flower produces either a seed or a pollinator offspring (which has fed on a single seed). Pollen from a syconium (i.e. fig, a closed urn-shaped inflorescence) is only dispersed by female pollinator offspring born in this syconium. Thus the fig tree is selected to produce both seed and pollinator offspring whereas for the pollinator there is no short term advantage in seed production. Using controlled pollination experiments (pollen injection, and foundress introduction), we show that 1) The relative proportion of seeds and pollinator offspring produced (i.e., the effective allocation between female and mule function) depends mainly on the number of foundresses that entered the syconium. 2) Many female flowers within every syconium mature neither a seed nor a wasp (from 25% to 33%). 3) All the female flowers within u syconium that are not vacant at maturity have the potential to produce a seed, and at least 80% of them can produce a pollinator. Several hypotheses concerning mechanisms that govern the partitioning between seed and wasp production are discussed, and their evolutionary consequences are considered.

Hossaert-Mckey, M., & Bronstein, J. L. (2001). Self-pollination and its costs in a monoecious fig (Ficus aurea, Moraceae) in a highly seasonal subtropical environment. American Journal of Botany, 88(4), 685-692.

PMID: 11302855;Abstract:

The unusual floral phenology of most monoecious figs, related to their highly specialized pollination mutualism with agaonid wasps, combines pronounced dichogamy at the level of inflorescences and individuals with population-level asynchrony in flowering. This floral phenology ensures that outcrossing strongly predominates. Fig populations may thus be expected to possess deleterious recessive alleles that lead to inbreeding depression when selfing does occur. However, whether monoecious figs are self-compatible and whether selfing results in inbreeding depression have never been investigated. Using wasps as "pollination tools" and exploiting infrequent overlap in male and female phases on the same tree, we conducted controlled selfed and outcrossed pollination experiments in Ficus aurea. Our results show that this species is totally self-compatible. No negative effects of selfing could be demonstrated on syconium retention, number of vacant ovaries, seed set, or seed germination. However, wasp production had a tendency to be higher after self-pollination. While it is possible that inbreeding depression is expressed at later developmental stages, its absence at the early stages we examined is nonetheless surprising for a plant expected to be highly outcrossed. It is likely that selection pressures other than avoidance of inbreeding are responsible for the evolution and maintenance of the unusual floral phenology of figs.

Brodie, J., Aslan, C., Rogers, H., Redford, K., Maron, J., Bronstein, J., & Groves, C. (2014). Secondary extinctions of biodiversity. Trends in Ecology and Evolution, 29, 664-672.
Bronstein, J., Rafferty, N., CaraDonna, P., Burkle, L., & Iler, A. (2013). Phenological overlap of interacting species in a changing climate: an assessment of available approaches. Ecology and Evolution. doi:10.1002/ece3.668