Laurence Hurley
Associate Director, BIO5 Institute
Professor, BIO5 Institute
Professor, Medicinal Chemistry-Pharmaceutical Sciences
Professor, Medicinal Chemistry-Pharmacology and Toxicology
Professor, Cancer Biology - GIDP
Primary Department
Department Affiliations
(520) 626-5622
Work Summary
Laurence Hurley's long-time research interest is in molecular targeting of DNA, first by covalent binders (CC-1065 and psorospermin), then as compounds that target protein–DNA complexes (pluramycins and Et 743), and most recently as four-stranded DNA structures (G-quadruplexes and i-motifs). He was the first to show that targeting G-quadruplexes could inhibit telomerase (Sun et al. [1997] J. Med. Chem., 40, 2113) and that targeting G-quadruplexes in promoter complexes results in inhibition of transcription (Siddiqui-Jain et al. [2002] Proc. Natl. Acad. Sci. U.S.A., 99, 11593).
Research Interest
Laurence Hurley, PhD, embraces an overall objective to design and develop novel antitumor agents that will extend the productive lives of patients who have cancer. His research program in medicinal chemistry depends upon a structure-based approach to drug design that is intertwined with a clinical oncology program in cancer therapeutics directed by Professor Daniel Von Hoff at TGen at the Mayo Clinic in Scottsdale. Dr. Hurley directs a research group that consists of a team of graduate and postdoctoral students with expertise in structural and synthetic chemistry working alongside students in biochemistry and molecular biology. NMR and in vivo evaluations of novel agents are carried out in collaboration with other research groups in the Arizona Cancer Center. At present, they have a number of different groups of compounds that target a variety of intracellular receptors. These receptors include: (1) transcriptional regulatory elements, (2) those involved in cell signaling pathways, and (3) protein-DNA complexes, including transcriptional factor-DNA complexes.In close collaboration with Dr. Gary Flynn in Medicinal Chemistry, he has an ongoing program to target a number of important kinases, including aurora kinases A and B, p38, and B-raf. These studies involve structure-based approaches as well as virtual screening. Molecular modeling and synthetic medicinal chemistry are important tools.The protein–DNA complexes involved in transcriptional activation of promoter complexes using secondary DNA structures are also targets for drug design.

Publications

Hahn, T., Bradley-Dunlop, D. J., Hurley, L. H., Von-Hoff, D., Gately, S., Mary, D. L., Lu, H., Penichet, M. L., Besselsen, D. G., Cole, B. B., Meeuwsen, T., Walker, E., & Akporiaye, E. T. (2011). The vitamin E analog, alpha-tocopheryloxyacetic acid enhances the anti-tumor activity of trastuzumab against HER2/neu-expressing breast cancer. BMC cancer, 11.
BIO5 Collaborators
David G Besselsen, Laurence Hurley

HER2/neu is an oncogene that facilitates neoplastic transformation due to its ability to transduce growth signals in a ligand-independent manner, is over-expressed in 20-30% of human breast cancers correlating with aggressive disease and has been successfully targeted with trastuzumab (Herceptin®). Because trastuzumab alone achieves only a 15-30% response rate, it is now commonly combined with conventional chemotherapeutic drugs. While the combination of trastuzumab plus chemotherapy has greatly improved response rates and increased survival, these conventional chemotherapy drugs are frequently associated with gastrointestinal and cardiac toxicity, bone marrow and immune suppression. These drawbacks necessitate the development of new, less toxic drugs that can be combined with trastuzumab. Recently, we reported that orally administered alpha-tocopheryloxyacetic acid (α-TEA), a novel ether derivative of alpha-tocopherol, dramatically suppressed primary tumor growth and reduced the incidence of lung metastases both in a transplanted and a spontaneous mouse model of breast cancer without discernable toxicity.

Galbraith, D. W., Bourque, D. P., & Bohnert, H. J. (1995). Preface. Methods in Cell Biology, 50(C), xxi-xxii.
BIO5 Collaborators
David W Galbraith, Laurence Hurley
Kshirsagar, T. A., & Hurley, L. H. (1998). A facile synthesis of 5-mesyl-3-benzylbenz[e]indole: Implications for the involvement of a p-quinone methide intermediate. Journal of Organic Chemistry, 63(16), 5722-5724.
Siddiqui-Jain, A., Grand, C. L., Bearss, D. J., & Hurley, L. H. (2002). Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proceedings of the National Academy of Sciences of the United States of America, 99(18), 11593-11598.

PMID: 12195017;PMCID: PMC129314;Abstract:

The nuclease hypersensitivity element III1 upstream of the P1 promoter of c-MYC controls 85-90% of the transcriptional activation of this gene. We have demonstrated that the purine-rich strand of the DNA in this region can form two different intramolecular G-quadruplex structures, only one of which seems to be biologically relevant. This biologically relevant structure is the kinetically favored chair-form G-quadruplex, which is destabilized when mutated with a single G → A transition, resulting in a 3-fold increase in basal transcriptional activity of the c-MYC promoter. The cationic porphyrin TMPyP4, which has been shown to stabilize this G-quadruplex structure, is able to suppress further c-MYC transcriptional activation. These results provide compelling evidence that a specific G-quadruplex structure formed in the c-MYC promoter region functions as a transcriptional repressor element. Furthermore, we establish the principle that c-MYC transcription can be controlled by ligand-mediated G-quadruplex stabilization.

Zeng, Q., Kwok, Y., Kerwin, S. M., Mangold, G., & Hurley, L. H. (1998). Design of new topoisomerase II inhibitors based upon a quinobenzoxazine self-assembly model. Journal of Medicinal Chemistry, 41(22), 4273-4278.

PMID: 9784102;Abstract:

A new class of pyridobenzophenoxazine compounds has been developed as topoisomerase II inhibitors for anticancer chemotherapy. These compounds were designed based on a proposed model of a quinobenzoxazine self-assembly complex on DNA. They showed excellent inhibitory effects on several tumor cell lines with nanomolar IC50 values. Their cytotoxic potency correlates with theft ability to unwind DNA and inhibit topoisomerase II.