Laurence Hurley

Laurence Hurley

Associate Director, BIO5 Institute
Professor, Medicinal Chemistry-Pharmaceutical Sciences
Professor, Medicinal Chemistry-Pharmacology and Toxicology
Professor, Cancer Biology - GIDP
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-5622

Work Summary

Laurence Hurley's long-time research interest is in molecular targeting of DNA, first by covalent binders (CC-1065 and psorospermin), then as compounds that target protein–DNA complexes (pluramycins and Et 743), and most recently as four-stranded DNA structures (G-quadruplexes and i-motifs). He was the first to show that targeting G-quadruplexes could inhibit telomerase (Sun et al. [1997] J. Med. Chem., 40, 2113) and that targeting G-quadruplexes in promoter complexes results in inhibition of transcription (Siddiqui-Jain et al. [2002] Proc. Natl. Acad. Sci. U.S.A., 99, 11593).

Research Interest

Laurence Hurley, PhD, embraces an overall objective to design and develop novel antitumor agents that will extend the productive lives of patients who have cancer. His research program in medicinal chemistry depends upon a structure-based approach to drug design that is intertwined with a clinical oncology program in cancer therapeutics directed by Professor Daniel Von Hoff at TGen at the Mayo Clinic in Scottsdale. Dr. Hurley directs a research group that consists of a team of graduate and postdoctoral students with expertise in structural and synthetic chemistry working alongside students in biochemistry and molecular biology. NMR and in vivo evaluations of novel agents are carried out in collaboration with other research groups in the Arizona Cancer Center. At present, they have a number of different groups of compounds that target a variety of intracellular receptors. These receptors include: (1) transcriptional regulatory elements, (2) those involved in cell signaling pathways, and (3) protein-DNA complexes, including transcriptional factor-DNA complexes.In close collaboration with Dr. Gary Flynn in Medicinal Chemistry, he has an ongoing program to target a number of important kinases, including aurora kinases A and B, p38, and B-raf. These studies involve structure-based approaches as well as virtual screening. Molecular modeling and synthetic medicinal chemistry are important tools.The protein–DNA complexes involved in transcriptional activation of promoter complexes using secondary DNA structures are also targets for drug design.

Publications

Hurley, L. H., Needham-VanDevanter, D., & Lee, C. (1987). Demonstration of the asymmetric effect of CC-1065 on local DNA structure using a site-directed adduct in a 117-base-pair fragment from M13mp1. Proceedings of the National Academy of Sciences of the United States of America, 84(18), 6412-6416.

PMID: 2819875;PMCID: PMC299086;Abstract:

Using DNase I and Alu I endonuclease analysis of a site-directed CC-1065-[N3-adenine]DNA adduct in a 117-base-pair fragment from M13mp1 DNA, we have demonstrated that CC-1065 produces an asymmetric effect on DNA conformation that extends more than one helix turn to the 5' side of the covalently modified adenine. CC-1065 is a potent antitumor antibiotic produced by Streptomyces zelensis, which is believed to mediate its cytotoxic effects through covalent binding to DNA. Previous studies have demonstrated that CC-1065 binds covalently to N3 of adenine and lies within the minor groove of DNA spanning a 4-base-pair sequence to the 5' side of the modified adenine. DNase I footprinting of this site-directed CC-1065-DNA adduct on the noncovalently modified strand shows that inhibition of cleavage occurs over a 12-base region, which is bordered on the 3' side by a site of 2-fold enhancement of cleavage. On the covalently modified strand a much less pronounced inhibition/enhancement pattern of cleavage occurs as far as 11 bases to the 5' side of the covalently modified adenine. While Hae III is able to cleave the DNA on both strands on the 3' side of the covalently modified adenine, Alu I is only able to cleave the covalently modified strand on the 5' side of the adduct. By taking into account the recently published structure of DNase I, we are able to interpret these results and develop a model for the effect of CC-1065 on local DNA structure. In this model, we propose selective drug-induced distortion of the covalently modified strand as a consequence of the alkylation of adenine by CC-1065.

Henderson, D., & Hurley, L. H. (1996). Specific targeting of protein-DNA complexes by DNA-reactive drugs (+)- CC-1065 and pluramycins. Journal of Molecular Recognition, 9(2), 75-87.

PMID: 8877797;Abstract:

To gain insight into the interactions between transcriptional factor proteins and DNA, the DNA-reactive drugs (+)-CC-1065 and pluramycin were used to target specific protein-DNA complexes. The structural features of the complex between the transcriptional activator Sp1 and the 21-base-pair repeat of the early promoter region of SV40 DNA were examined using hydroxyl-radical footprinting; (+)-CC-1065, a sequence-specific minor groove bending probe; and circularization experiments. The results show that the 21-base-pair repeat region has an intrinsically in-phase bent structure that is stabilized upon saturation Sp1 binding by protein-DNA and protein-protein interactions to produce a looping structure. The intercalating drug pluramycin was used to probe the structural details of the interaction between the TATA binding protein (TBP) and the TATA box DNA sequence. TBP, which directs initiation of RNA transcription, exhibits two-fold symmetry and apparently interacts with the TATA box in a symmetrical fashion. However, the interaction results in an asymmetric effect, in that transcription is initiated only in the downstream direction. Using pluramycin as a probe, it was determined that TBP binding to the human myoglobin TATA sequences enhances pluramycin reactivity at a site immediately downstream of the TATA box. The implications on transcriptional control of ternary complexes comprised of transcriptional factors, DNA, and DNA-reactive compounds will be presented.

Thurston, D. E., & Hurley, L. H. (1983). A rational basis for development of antitumor agents in the pyrrolo[1,4]benzodiazepine group. Drugs of the Future, 8(11), 957-971.
Kaiser, C. E., Van Ert, N. A., Agrawal, P., Chawla, R., Yang, D., & Hurley, L. H. (2017). Insight into the Complexity of the i-Motif and G-Quadruplex DNA Structures Formed in the KRAS Promoter and Subsequent Drug-Induced Gene Repression. Journal of the American Chemical Society, 139(25), 8522-8536.

Activating KRAS mutations frequently occur in pancreatic, colorectal, and lung adenocarcinomas. While many attempts have been made to target oncogenic KRAS, no clinically useful therapies currently exist. Most efforts to target KRAS have focused on inhibiting the mutant protein; a less explored approach involves targeting KRAS at the transcriptional level. The promoter element of the KRAS gene contains a GC-rich nuclease hypersensitive site with three potential DNA secondary structure-forming regions. These are referred to as the Near-, Mid-, and Far-regions, on the basis of their proximity to the transcription start site. As a result of transcription-induced negative superhelicity, these regions can open up to form unique DNA secondary structures: G-quadruplexes on the G-rich strand and i-motifs on the C-rich strand. While the G-quadruplexes have been well characterized, the i-motifs have not been investigated as thoroughly. Here we show that the i-motif that forms in the C-rich Mid-region is the most stable and exists in a dynamic equilibrium with a hybrid i-motif/hairpin species and an unfolded hairpin species. The transcription factor heterogeneous nuclear ribonucleoprotein K (hnRNP K) was found to bind selectively to the i-motif species and to positively modulate KRAS transcription. Additionally, we identified a benzophenanthridine alkaloid that dissipates the hairpin species and destabilizes the interaction of hnRNP K with the Mid-region i-motif. This same compound stabilizes the three existing KRAS G-quadruplexes. The combined effect of the compound on the Mid-region i-motif and the G-quadruplexes leads to downregulation of KRAS gene expression. This dual i-motif/G-quadruplex-interactive compound presents a new mechanism to modulate gene expression.

Seaman, F. C., & Hurley, L. H. (1999). 31P-Nmr as a probe for drug-nucleic acid interactions. Phosphorus, Sulfur and Silicon and Related Elements, 144-146, 297-300.

Abstract:

The structural impact of covalent and noncovalent interactions of drugs with DNA is an important component for understanding the biochemical and biological consequences of DNA damage. Work in this laboratory has focused on a number of potentially therapeutically important drugs that distort DNA by unwinding, bending DNA into the major or minor groove. These lead to enhanced recognition of DNA by proteins involved in transcription and replication. In this paper, we will present the structures of one of these complexes and show how 31P-NMR can be used to monitor these distortive effects.