Meredith Hay

Meredith Hay

Professor, Physiology
Professor, Evelyn F Mcknight Brain Institute
Professor, Psychology
Professor, Physiological Sciences - GIDP
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-7384

Work Summary

Our lab is focused on the development of novel peptides to inhibit this inflammatory cascade and improve brain blood flow. These peptides are designed to significantly improve serum half-life and penetrate the blood-brain-barrier. These peptides act to inhibit the inflammatory pathways at both the level of brain blood vessels and the brain itself.

Research Interest

Dr. Hay is internationally known for her work in cardiovascular neurobiology and her current studies on the role of sex and sex hormones in the development of hypertension. She has been continuously funded by the NIH and other sources for the past 26 years. She has extensive experience in central renin angiotensin mechanisms, neurophysiology and reactive oxygen and cytosolic calcium neuroimaging and in advancing knowledge related to central mechanisms of neurohumoral control of the circulation. She is a Professor of Physiology at the University of Arizona College of Medicine and maintains active participation in the American Physiological Society, the Society of Neuroscience, AAAS, and has served on numerous editorial boards of prestigious scientific journals and grant review panels for the National Institutes of Health and the National American Heart Association. The primary focus of Dr. Hay’s laboratory is the understanding of the biophysical and cellular mechanisms underlying neurotransmitter modulation of sympathetic outflow and ultimately arterial blood pressure. The scientific questions being asked are: 1) What central neurotransmitter mechanisms are involved in the normal regulation of cardiovascular function? 2) Does the development of some forms of hypertension involve biophysical or molecular alteration in the neurotransmitter mechanisms regulating cardiovascular control? 3) Can these central signal transduction systems, which control sympathetic outflow and ultimately arterial blood pressure, be altered in order to prevent or attenuate the development of some forms of hypertension? 4) Are there gender related differences in some of these mechanisms?Dr. Hay has extensive national experience in university-wide administration and interdisciplinary research program development. Prior to coming to the University of Arizona in 2008 as Executive Vice President and Provost, Dr. Hay was the Vice President for Research for the University of Iowa, where she worked with state and federal lawmakers, private sector representatives, and local community groups to broaden both private and public support for research universities. Dr. Hay, a Texas native, earned her B.A. in psychology from the University of Colorado, Denver, her M.S. in neurobiology from the University of Texas at San Antonio, and her Ph.D. in cardiovascular pharmacology from the University of Texas Health Sciences Center, San Antonio. She trained as a postdoctoral fellow in the Cardiovascular Center at the University of Iowa College of Medicine and in the Department of Molecular Physiology and Biophysics at Baylor College of Medicine in Houston. She was a tenured faculty member of the University of Missouri-Columbia from 1996-2005. Prior to Missouri, she was a faculty member in the Department of Physiology at the University of Texas Health Science Center- San Antonio.

Publications

Mueller, P. J., Foley, C. M., Vogl, H. W., Hay, M., & Hasser, E. M. (2005). Cardiovascular response to a group III mGluR agonist in NTS requires NMDA receptors. American journal of physiology. Regulatory, integrative and comparative physiology, 289(1), R198-208.

Previous studies have demonstrated that microinjection of the putative group III metabotropic glutamate receptor (mGluR) agonist, l(+)-2-amino-4-phosphonobutyric acid (L-AP4), into the nucleus tractus solitarius (NTS) produces depressor and sympathoinhibitory responses. These responses are significantly attenuated by a group III mGluR antagonist and may involve ionotropic glutamatergic transmission. Alternatively, a previous report in vitro suggests that preparations of L-AP4 may nonspecifically activate NMDA channels due to glycine contamination (Contractor A, Gereau RW, Green T, and Heinemann SF. Proc Natl Acad Sci USA 95: 8969-8974, 1998). Therefore, the present study tested whether responses to L-AP4 specifically require the N-methyl-D-aspartate (NMDA) receptor and whether they are due to actions at the glycine site on the NMDA channel. To test these possibilities in vivo, we performed unilateral microinjections of L-AP4, glycine, and selective antagonists into the NTS of urethane-anesthetized rats. L-AP4 (10 mM, 30 nl) produced sympathoinhibitory responses that were abolished by the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (AP-5, 10 mM) but were unaffected by the non-NMDA antagonist 6-nitro-7-sulfamobenzoquinoxaline-2,3-dione (NBQX, 2 mM). Microinjection of glycine (0.02-20 mM) failed to mimic sympathoinhibitory responses to L-AP4, even in the presence of the inhibitory glycine antagonist, strychnine (3 mM). Strychnine blocked pressor and sympathoexcitatory actions of glycine (20 mM) but failed to reveal a sympathoinhibitory component due to presumed activation of NMDA receptors. The results of these experiments suggest that responses to L-AP4 require NMDA receptors and are independent of non-NMDA receptors. Furthermore, although it is possible that glycine contamination or other nonspecific actions are responsible for the sympathoinhibitory actions of L-AP4, our data and data in the literature argue against this possibility. Thus we conclude that responses to L-AP4 in the NTS are mediated by an interaction between group III mGluRs and NMDA receptors. Finally, we also caution that nonselective actions of L-AP4 should be considered in future studies.

Xue, B., Badaue-Passos, D., Guo, F., Gomez-Sanchez, C. E., Hay, M., & Johnson, A. K. (2009). Sex differences and central protective effect of 17beta-estradiol in the development of aldosterone/NaCl-induced hypertension. American journal of physiology. Heart and circulatory physiology, 296(5), H1577-85.

The present study tested the hypotheses that male and female rats respond differently to subcutaneous infusions of aldosterone (Aldo; 1.8 microg.kg(-1).h(-1), 1% NaCl to drink; 28 days) and that central estrogen plays a protective role against the development of hypertension. In rats with blood pressure (BP) and heart rate (HR) measured by Data Sciences International telemetry, chronic Aldo/NaCl treatment induced a greater increase in BP in males (Delta25.4 +/- 2.4 mmHg) than in females (Delta7.1 +/- 2.2 mmHg). Gonadectomy augmented Aldo/NaCl-induced hypertension in females (Delta18.2 +/- 2.0 mmHg) but had no effect in males (Delta23.1 +/- 2.9 mmHg). Immunohistochemistry for Fra-like activity was higher in the paraventricular nucleus of intact males, castrated males, and ovariectomized (OVX) females compared with intact females after 28 days of Aldo/NaCl treatment. In intact males, central 17beta-estradiol (E(2)) inhibited the Aldo/NaCl increase in BP (Delta10.5 +/- 0.8) compared with that in central vehicle plus systemic Aldo/NaCl (Delta26.1 +/- 2.5 mmHg) rats. Combined administration of E(2) and estrogen receptor antagonist ICI182780 (ICI) blocked the protective effect of E(2) (Delta23.2 +/- 2.4 mmHg). In intact females central, but not peripheral, infusions of ICI augmented the Aldo/NaCl (Delta20.4 +/- 1.8 mmHg) BP increase. Finally, ganglionic blockade after Aldo infusions resulted in a smaller reduction in BP in intact females (-23.9 +/- 2.5 mmHg) and in central estrogen-treated males (-30.2 +/- 1.0 mmHg) compared with other groups (intact males, -39.3 +/- 3.4; castrated males, -41.8 +/- 1.9; intact males with central E(2) + ICI, -42.3 +/- 2.1; OVX females, -40.3 +/- 3.3; and intact females with central ICI, -39.1 +/- 1.3 mmHg). Chronic Aldo infusion produced increases in NaCl intake and decreases in HR that were both similar in all groups. Taken together, the results indicate that central estrogen plays a protective role in the development of Aldo/NaCl-induced hypertension and that this may result from reduced sympathetic outflow.

Hay, M. (2001). Subcellular mechanisms of area postrema activation. Clinical and experimental pharmacology & physiology, 28(7), 551-7.
Hayward, L., Hay, M., & Felder, R. B. (1993). Acute resetting of the carotid sinus baroreflex by aortic depressor nerve stimulation. The American journal of physiology, 264(4 Pt 2), H1215-22.

The effect of prolonged aortic depressor nerve (ADN) stimulation on carotid sinus baroreflex regulation of arterial pressure (AP) and renal sympathetic nerve activity (RSNA) was examined in anesthetized rabbits. Ramp increases in carotid sinus pressure (CSP) were repeated before and after 5 min of bilateral ADN stimulation. One minute after ADN stimulation the curve relating AP to CSP had shifted up and to the right, characterized by significant increases (P 0.05) in the maximum (91 +/- 2 to 101 +/- 3 mmHg; mean +/- SE), midpoint (118 +/- 7 to 125 +/- 8 mmHg CSP), and minimum (45 +/- 3 to 53 +/- 4 mmHg) of the AP reflex curve. There was a parallel shift downward of the curve relating RSNA to CSP, characterized by significant decreases in the maximum [100 +/- 0 to 66 +/- 8% of maximum control RSNA value (%max)], the range (90 +/- 2 to 59 +/- 8%max), and the gain (-1.0 +/- 0.2 to -0.5 +/- 0.1%max/mmHg) of the RSNA reflex curve. Values returned to control within 10 min of cessation of ADN stimulation. These results suggest that central neurons processing baroreflex information from one set of mechanoreceptors can be reset by convergent signals arising from another baroreceptor site.

Hay, M., & Kunze, D. L. (1994). Calcium-activated potassium channels in rat visceral sensory afferents. Brain research, 639(2), 333-6.

The purpose of the present study was to describe, at the single-channel level, the activity of a calcium-sensitive potassium channel in rat visceral-sensory neurons which has been suggested to be involved in sensory neuron excitability. Single-channel recordings in the inside-out configuration identified a 220 pS conductance calcium-activated potassium channel (KCa). From a -20 mV holding potential, increasing [Ca2+]i from 0.01 microM to 1.0 microM increased the open probability of this channel 92% (from 0.12 to 0.23). However, from a +20 mV holding potential, increasing [Ca2+]i from 0.01 to 1.0 microM increased the open probability by 326% (from 0.15 to 0.64). In addition, this large conductance KCa channel was blocked by TEA (1.0 microM) and charybdotoxin (40 microM) when applied to the external surface. These results are the first to characterize a large conductance KCa channel in the sensory afferent neurons of the rat nodose ganglia and should further expand the understanding of the ionic currents involved in the regulation of sensory afferent neuronal activity.