Michael T Marty

Michael T Marty

Assistant Professor, Chemistry and Biochemistry-Sci
Assistant Professor, Chemistry and Biochemistry - Med
Assistant Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 621-1501

Work Summary

The Marty Lab uses mass spectrometry to study interactions of membrane proteins, peptides, and lipids within nanoscale membrane mimetics.

Research Interest

Membrane proteins play a number of critical biochemical roles and make up the majority of drug targets. Despite their importance, membrane proteins remain challenging systems for analysis due to their amphipathic nature and low expression levels. Moreover, the lipid bilayer can play an important but largely unexplored role in regulating membrane protein structure and function. New analytical and biochemical methods are necessary to better understand and design drugs to target membrane proteins.

Publications

Reading, E., Walton, T. A., Liko, I., Marty, M. T., Laganowsky, A., Rees, D. C., & Robinson, C. V. (2015). The Effect of Detergent, Temperature, and Lipid on the Oligomeric State of MscL Constructs: Insights from Mass Spectrometry. Chemistry & biology, 22(5), 593-603.

The mechanosensitive channel of large conductance (MscL) acts as an emergency release valve for osmotic shock of bacteria preventing cell lysis. The large pore size, essential for function, requires the formation of oligomers with tetramers, pentamers, or hexamers observed depending on the species and experimental approach. We applied non-denaturing (native) mass spectrometry to five different homologs of MscL to determine the oligomeric state under more than 50 different experimental conditions elucidating lipid binding and subunit stoichiometry. We found equilibrium between pentameric and tetrameric species, which can be altered by detergent, disrupted by binding specific lipids, and perturbed by increasing temperature (37°C). We also established the presence of lipopolysaccharide bound to MscL and other membrane proteins expressed in Escherichia coli, revealing a potential source of heterogeneity. More generally, we highlight the use of mass spectrometry in probing membrane proteins under a variety of detergent-lipid environments relevant to structural biology.