Parker B Antin

Parker B Antin

Associate Dean, Research-Agriculture and Life Sciences
Associate Vice President for Research, Agriculture - Life and Veterinary Sciences / Cooperative Extension
Professor, Cellular and Molecular Medicine
Professor, Molecular and Cellular Biology
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 621-5242

Research Interest

Parker Antin is Professor of Cellular and Molecular Medicine in the College of Medicine, Associate Vice President for Research for the Division of Agriculture, Life and Veterinary Medicine, and Cooperative Extension, and Associate Dean for Research in the College of Agriculture and Life Sciences. In his positions of Associate Vice President and Associate Dean, he is responsible for developing and implementing the research vision for the Colleges of Agriculture and Life Sciences and the College of Veterinary Medicine, with total research expenditures of approximately $65M per year. His responsibilities include oversight of research strategy and portfolio investment, grants and contracts pre award services, research intensive faculty hires and retentions, research communication and marketing, research facilities, and research compliance services. In collaboration with Division and College leadership teams, he has shared responsibilities for philanthropy, budgets and information technology. Dr. Antin is a vertebrate developmental biologist whose research is concerned with the molecular mechanisms of embryonic development. His research has been supported by NIH, NSF, NASA, USDA, and the DOE, as well as several private foundations including the American Heart Association and the Muscular Dystrophy Association, He is the Principal Investigator of CyVerse, a $115M NSF funded cyberinfrastructure project whose mission is to design, deploy and expand a national cyberinfrastructure for life sciences research, and train scientists in its use (http://cyverse.org). With 65,000 users worldwide, CyVerse enables scientists to manage and store data and experiments, access high-performance computing, and share data and results with colleagues and the public. Dr. Antin is also active nationally in the areas of science policy and funding for science. He is a past President of the Federation of Societies for Experimental Biology (FASEB), an umbrella science policy and advocacy organization representing 32 scientific societies and 135,000 scientists. His continued work with FASEB, along with his duties as Associate Vice President and Associate Dean for Research, and CyVerse PI, brings him frequently to Washington, DC, where he advocates for support of science and science policy positions that enhance the scientific enterprise.

Publications

Menendez, L., Yatskievych, T. A., Antin, P. B., & Dalton, S. (2012). Wnt signaling and a Smad pathway blockade direct the differentiation of human pluripotent stem cells to multipotent neural crest cells (Proceedings of the National Academy of Sciences (2011) 108, 48 (19240-19245) DOI: 10.1073/pnas.1113746108). Proceedings of the National Academy of Sciences of the United States of America, 109(23), 9220-.
Antin, P. B., & Konieczka, J. H. (2005). Genomic resources for chicken. Developmental Dynamics, 232(4), 877-882.

PMID: 15739221;Abstract:

The recent sequencing and draft assembly of a chicken genome has provided biologists with an invaluable research tool that complements a growing list of additional avian genomic resources. For many researchers, finding and using these resources is challenging, because information is presented through an increasing number of Web sites and browser navigation frequently requires specific knowledge and expertise. This primer provides an overview of online genomic resources for the chicken, including the Ensembl, UCSC, and NCBI annotated chicken genome browsers; expressed sequence tag and in situ hybridization databases; and sources for microarrays, cDNAs, and bacterial artificial chromosomes (BACs). Several short tutorials oriented toward the biologist with limited bioinformatics skills outline how to retrieve several types of commonly needed information and reagents. © 2005 Wiley-Liss, Inc.

Hardy, K. M., Garriock, R. J., Yatskievych, T. A., D'Agostino, S. L., Antin, P. B., & Krieg, P. A. (2008). Non-canonical Wnt signaling through Wnt5a/b and a novel Wnt11 gene, Wnt11b, regulates cell migration during avian gastrulation. Developmental Biology, 320(2), 391-401.

PMID: 18602094;PMCID: PMC2539108;Abstract:

Knowledge of the molecular mechanisms regulating cell ingression, epithelial-mesenchymal transition and migration movements during amniote gastrulation is steadily improving. In the frog and fish embryo, Wnt5 and Wnt11 ligands are expressed around the blastopore and play an important role in regulating cell movements associated with gastrulation. In the chicken embryo, although Wnt5a and Wnt5b are expressed in the primitive streak, the known Wnt11 gene is expressed in paraxial and intermediate mesoderm, and in differentiated myocardial cells, but not in the streak. Here, we identify a previously uncharacterized chicken Wnt11 gene, Wnt11b, that is orthologous to the frog Wnt11 and zebrafish Wnt11 (silberblick) genes. Chicken Wnt11b is expressed in the primitive streak in a pattern similar to chicken Wnt5a and Wnt5b. When non-canonical Wnt signaling is blocked using a Dishevelled dominant-negative protein, gastrulation movements are inhibited and cells accumulate in the primitive streak. Furthermore, disruption of non-canonical Wnt signaling by overexpression of full-length or dominant-negative Wnt11b or Wnt5a constructions abrogates normal cell migration through the primitive streak. We conclude that non-canonical Wnt signaling, mediated in part by Wnt11b, is important for regulation of gastrulation cell movements in the avian embryo. © 2008 Elsevier Inc. All rights reserved.

Antin, P. B., Yatskievych, T. A., Davey, S., & Darnell, D. K. (2014). GEISHA: An evolving gene expression resource for the chicken embryo. Nucleic Acids Research, 42(D1), D933-D937.

Abstract:

GEISHA (Gallus Expression In Situ Hybridization Analysis; http://geisha.arizona.edu) is an in situ hybridization gene expression and genomic resource for the chicken embryo. This update describes modifications that enhance its utility to users. During the past 5 years, GEISHA has undertaken a significant restructuring to more closely conform to the data organization and formatting of Model Organism Databases in other species. This has involved migrating from an entry-centric format to one that is gene-centered. Database restructuring has enabled the inclusion of data pertaining to chicken genes and proteins and their orthologs in other species. This new information is presented through an updated user interface. In situ hybridization data in mouse, frog, zebrafish and fruitfly are integrated with chicken genomic and expression information. A resource has also been developed that integrates the GEISHA interface information with the Online Mendelian Inheritance in Man human disease gene database. Finally, the Chicken Gene Nomenclature Committee database and the GEISHA database have been integrated so that they draw from the same data resources. © 2013 The Author(s). Published by Oxford University Press.

Antin, P. B., Yatskievych, T., Dominguez, J. L., & Chieffi, P. (1996). Regulation of avian precardiac mesoderm development by insulin and insulin-like growth factors. Journal of Cellular Physiology, 168(1), 42-50.

PMID: 8647921;Abstract:

Endoderm within the heart forming regions of vertebrate embryos has pronounced effects on myocardial cell development. Previous studies have suggested that these effects are mediated by soluble growth factors, in particular fibroblast growth factor 2 (FGF-2) and activin-A. Since both insulin and insulin-like growth factors (IGFs) are present in developing avian embryos at the time of heart formation, we have investigated the potential role of these molecules in promoting development of premyocardial cells in quail. Culture of precardiac mesoderm explants from stage 5 quail embryos in medium containing insulin, IGF-I, or IGF-II increased proliferation of premyocardial cells, with maximal stimulation observed at approximately 25 nM for each ligand. A direct comparison of the proliferative response of precardiac mesoderm to endoderm, fetal calf serum, insulin, IGF-I, IGF-II, activin-A, and FGF-2 showed that FGF-2 and activin-A increased proliferation of premyocardial cells approximately 2-fold, while insulin, IGF-I, and IGF-II stimulated proliferation approximately 3-fold. Insulin and IGF-I enhanced the rate of myocyte differentiation, similar to previously reported effects of endoderm. In contrast, exposure of precardiac mesoderm explants to transforming growth factor beta (TGFβ) reduced proliferation of premyocardial cells and moderated the proliferative effects of IGF-I. TGFβ did not block the differentiation of stage 5 premyocardial cells. Reverse transcription-polymerase chain reaction (RT-PCR) analyses showed that mRNAs encoding insulin, IGF-II, insulin receptor, and IGF-I receptor were present in both precardiac mesoderm and endoderm, as well as in the forming heart at stage 8. Since premyocardial cells can survive and differentiate in a defined medium lacking these factors precardiac mesoderm may produce IGF-II and insulin at levels that are sufficient to stimulate myocyte development. Taken together, these results suggest that insulin and/or IGF-II may promote cardiac development in vivo by both autocrine and paracrine mechanisms. Cardiogenesis may therefore be promoted by the combined action of several classes of growth factors.