Shane C Burgess

Shane C Burgess

Dean, Charles-Sander - College of Agriculture and Life Sciences
Vice President, Agriculture - Life and Veterinary Sciences / Cooperative Extension
Professor, Animal and Comparative Biomedical Sciences
Professor, Immunobiology
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 621-7621

Research Interest

Shane C. BurgessVice President for Agriculture, Life and Veterinary Sciences, and Cooperative ExtensionDean, College of Agriculture and Life SciencesInterim Dean, School of Veterinary MedicineDirector, Arizona Experiment StationA native of New Zealand, Dr. Burgess has worked around the world as a practicing veterinarian and scientist. His areas of expertise include cancer biology, virology, proteomics, immunology and bioinformatics.Since 1997 he has 186 refereed publications, trained 37 graduate students and has received nearly $55 million in competitive funding.The first in his extended family to complete college, Dr. Burgess graduated with distinction as a veterinarian in 1989 from Massey University, New Zealand. He has worked in, and managed veterinary clinical practices in Australia and the UK, including horses, farm animals, pets, wild and zoo animals, and emergency medicine and surgery. He did a radiology residency at Murdoch University in Perth in Western Australia, where he co-founded Perth's first emergency veterinary clinic concurrently. He has managed aquaculture facilities in Scotland. He did his PhD in virology, immunology and cancer biology, conferred by Bristol University medical school, UK while working full time outside of the academy between 1995 and 1998. Dr. Burgess volunteered to work in the UK World Reference Laboratory for Exotic Diseases during the 2001 UK foot and mouth disease crisis, where he led the diagnosis reporting office, for the Office of the UK Prime Minister Tony Blair. He was awarded the Institute for Animal Health Director's Award for Service.In 2002, Dr. Burgess joined Mississippi State University’s College of Veterinary Medicine as an assistant professor. He was recruited from Mississippi State as a professor, an associate dean of the college and director of the Institute for Genomics, Biocomputing and Biotechnology to lead the UA College of Agriculture and Life Sciences in July 2011. Under Dr. Burgess’ leadership, the college has a total budget of more than $120M with over 3,400 students and more than 1,800 employees.

Publications

Memili, E., Peddinti, D., Shack, L. A., Nanduri, B., McCarthy, F., Sagirkaya, H., & Burgess, S. C. (2007). Bovine germinal vesicle oocyte and cumulus cell proteomics. Reproduction, 133(6), 1107-1120.

PMID: 17636165;Abstract:

Germinal vesicle (GV) breakdown is fundamental for maturation of fully grown, developmentally competent, mammalian oocytes. Bidirectional communication between oocytes and surrounding cumulus cells (CC) is essential for maturation of a competent oocyte. However, neither the factors involved in this communication nor the mechanisms of their actions are well defined. Here, we define the proteomes of GV oocytes and their surrounding CC, including membrane proteins, using proteomics in a bovine model. We found that 4395 proteins were expressed in the CC and 1092 proteins were expressed in oocytes. Further, 858 proteins were common to both the CC and the oocytes. This first comprehensive proteome analysis of bovine oocytes and CC not only provides a foundation for signaling and cell physiology at the GV stage of oocyte development, but are also valuable for comparative studies of other stages of oocyte development at the molecular level. Furthermore, some of these proteins may represent molecular biomarkers for developmental potential of oocytes. © 2007 Society for Reproduction and Fertility.

Levy, A. M., Davidson, I., Burgess, S. C., & Heller, E. D. (2003). Major histocompatibility complex class I is downregulated in Marek's disease virus infected chicken embryo fibroblasts and corrected by chicken interferon. Comparative Immunology, Microbiology and Infectious Diseases, 26(3), 189-198.

PMID: 12581748;Abstract:

The major histocompatibility complex (MHC) is a part of the immune system which presents epitopes of intracellular antigens on the cell surface. MHC molecules have receptor-ligand binding affinities with T lymphocytes, permitting the latter to detect foreign intracellular infectious agents. Some pathogens, such as herpesviruses, have developed strategies of evading the host response by MHC. This pressure on the immune system brought, in turn, improvements in the antigen-presenting pathway, for example through the effect of interferon (IFN), which can upregulate MHC expression. The main objective of this work was on the one hand, to determine the abilities of three strains of Marek's disease virus (MDV), a chicken herpesvirus, in interfering with the expression of MHC class I molecules in chicken embryo fibroblasts. On the other hand, we analyzed the ability of IFN to reinstate this important immune capability to the infected cells. Our results show that only an oncogenic serotype 1 strain of MDV (RB1B) was able to markedly decrease MHC class I expression, and that addition of IFN reversed this MDV effect. © 2002 Elsevier Science Ltd. All rights reserved.

Kumar, R., Shah, P., Swiatlo, E., Burgess, S. C., Lawrence, M. L., & Nanduri, B. (2010). Identification of novel non-coding small RNAs from Streptococcus pneumoniae TIGR4 using high-resolution genome tiling arrays. BMC Genomics, 11(1).

PMID: 20525227;PMCID: PMC2887815;Abstract:

Background: The identification of non-coding transcripts in human, mouse, and Escherichia coli has revealed their widespread occurrence and functional importance in both eukaryotic and prokaryotic life. In prokaryotes, studies have shown that non-coding transcripts participate in a broad range of cellular functions like gene regulation, stress and virulence. However, very little is known about non-coding transcripts in Streptococcus pneumoniae (pneumococcus), an obligate human respiratory pathogen responsible for significant worldwide morbidity and mortality. Tiling microarrays enable genome wide mRNA profiling as well as identification of novel transcripts at a high-resolution.Results: Here, we describe a high-resolution transcription map of the S. pneumoniae clinical isolate TIGR4 using genomic tiling arrays. Our results indicate that approximately 66% of the genome is expressed under our experimental conditions. We identified a total of 50 non-coding small RNAs (sRNAs) from the intergenic regions, of which 36 had no predicted function. Half of the identified sRNA sequences were found to be unique to S. pneumoniae genome. We identified eight overrepresented sequence motifs among sRNA sequences that correspond to sRNAs in different functional categories. Tiling arrays also identified approximately 202 operon structures in the genome.Conclusions: In summary, the pneumococcal operon structures and novel sRNAs identified in this study enhance our understanding of the complexity and extent of the pneumococcal 'expressed' genome. Furthermore, the results of this study open up new avenues of research for understanding the complex RNA regulatory network governing S. pneumoniae physiology and virulence. © 2010 Kumar et al; licensee BioMed Central Ltd.

Kunec, D., Haren, S. v., Burgess, S. C., & Hanson, L. A. (2009). A Gateway® recombination herpesvirus cloning system with negative selection that produces vectorless progeny. Journal of Virological Methods, 155(1), 82-86.

PMID: 18948138;Abstract:

Crossover recombination based on the lambda phage integration/excision functions enables insertion of a gene of interest into a specific locus by a simple one-step in vitro recombination reaction. Recently, a highly efficient recombination system for targeted mutagenesis, which utilizes lambda phage crossover recombination cloning, has been described for a human herpesvirus 2 bacterial artificial chromosome (BAC). The disadvantages of the system are that it allows only neutral selection (loss of green fluorescent protein) of desired recombinants and that it regenerates herpesvirus progeny containing the BAC sequence inserted in the herpesvirus genome. In this study, the existing channel catfish herpesvirus (CCV) infectious clone (in the form of overlapping fragments) was modified to allow introduction of foreign genes by modified lambda phage crossover recombination cloning. This novel system enables negative and neutral selection and regenerates vectorless herpesvirus progeny. Construction of two CCV mutants expressing lacZ, one from the native CCV ORF5 promoter and the other from the immediate-early cytomegalovirus promoter, demonstrated the efficiency and reliability of this system. This novel cloning system enables rapid incorporation, direct delivery and high-level expression of foreign genes by a herpesvirus. This system has broad utility and could be used to facilitate development of recombinant viruses, viral vectors and better vaccines. © 2008 Elsevier B.V. All rights reserved.

Buza, J. J., & Burgess, S. C. (2007). Modeling the proteome of a Marek's disease transformed cell line: A natural animal model for CD30 overexpressing lymphomas. Proteomics, 7(8), 1316-1326.

PMID: 17443643;Abstract:

Marek's disease (MD) in the chicken, caused by the highly infectious MD α-herpesvirus (MDV), is both commercially important and a unique, naturally occurring model for human T-cell lymphomas overexpressing the Hodgkin's disease antigen, CD30. Here, we used proteomics as a basis for modeling the molecular functions and biological processes involved in MDV-induced lymphomagenesis. Proteins were extracted from an MDV-transformed cell line and were then identified using 2-D LC-ESI-MS/MS. From the resulting 3870 cellular and 21 MDV proteins we confirm the existence of 3150 "predicted" and 12 "hypothetical" chicken proteins. The UA-01 proteome is proliferative, differentiated, angiogenic, pro-metastatic and pro-immune-escape but anti-programmed cell death, -anergy, -quiescence and -senescence and is consistent with a cancer phenotype. In particular, the pro-metastatic integrin signaling pathway and the ERK/MAPK signaling pathways were the two predominant signaling pathways represented. The cytokines, cytokine receptors, and their related proteins suggest that UA-01 has a regulatory T-cell phenotype. © 2007 Wiley-VCH Verlag GmbH & Co. KGaA.