Tally M Largent-Milnes
Assistant Professor, BIO5 Institute
Assistant Professor, Pharmacology
Primary Department
Department Affiliations
(520) 626-6400
Research Interest
Dr. Tally Largent-Milnes Ph.D., is a Research Assistant Professor of Pharmacology at the University of Arizona. Dr. Largent-Milnes is a member of the International Association for the Study of Pain, the Society for Neuroscience, and the American Pain Society. Her major research focus is on trigeminal (Vc) synaptic physiology, neuropathic pain and rational design of multifunctional compounds to treat chronic pain. Dr. Largent-Milnes uses whole-cell patch clamp electrophysiology, immunohistochemistry, behavior, and pharmacology, to explore excitatory synaptic transmission between trigeminal afferents and nucleus caudalis (Vc) neurons as well as the adaptations that accompany certain pathologies/pharmacological interventions. Her work is critical to improve our understanding of the construction of the trigeminal system at the synaptic level, and will allow for the development of better therapeutics to treat select craniofacial pain disorders through her research.

Publications

Forte, B. L., Slosky, L. M., Zhang, H., Arnold, M. R., Staatz, W. D., Hay, M., Largent-Milnes, T. M., & Vanderah, T. W. (2016). Angiotensin-(1-7)/Mas receptor as an antinociceptive agent in cancer-induced bone pain. Pain, 157(12), 2709-2721.
BIO5 Collaborators
Meredith Hay, Tally M Largent-Milnes

Many cancerous solid tumors metastasize to the bone and induce pain (cancer-induced bone pain [CIBP]). Cancer-induced bone pain is often severe because of enhanced inflammation, rapid bone degradation, and disease progression. Opioids are prescribed to manage this pain, but they may enhance bone loss and increase tumor proliferation, further compromising patient quality of life. Angiotensin-(1-7) (Ang-(1-7)) binds and activates the Mas receptor (MasR). Angiotensin-(1-7)/MasR activation modulates inflammatory signaling after acute tissue insult, yet no studies have investigated whether Ang-(1-7)/MasR play a role in CIBP. We hypothesized that Ang-(1-7) inhibits CIBP by targeting MasR in a murine model of breast CIBP. 66.1 breast cancer cells were implanted into the femur of BALB/cAnNHsd mice as a model of CIBP. Spontaneous and evoked pain behaviors were assessed before and after acute and chronic administration of Ang-(1-7). Tissues were collected from animals for ex vivo analyses of MasR expression, tumor burden, and bone integrity. Cancer inoculation increased spontaneous pain behaviors by day 7 that were significantly reduced after a single injection of Ang-(1-7) and after sustained administration. Preadministration of A-779 a selective MasR antagonist prevented this reduction, whereas pretreatment with the AT2 antagonist had no effect; an AT1 antagonist enhanced the antinociceptive activity of Ang-(1-7) in CIBP. Repeated Ang-(1-7) administration did not significantly change tumor burden or bone remodeling. Data here suggest that Ang-(1-7)/MasR activation significantly attenuates CIBP, while lacking many side effects seen with opioids. Thus, Ang-(1-7) may be an alternative therapeutic strategy for the nearly 90% of patients with advanced-stage cancer who experience excruciating pain.

Francois-Moutal, L., Wang, Y., Moutal, A., Cottier, K. E., Melemedjian, O. K., Yang, X., Wang, Y., Ju, W., Largent-Milnes, T. M., Khanna, M., Vanderah, T. W., & Khanna, R. (2015). A membrane-delimited N-myristoylated CRMP2 peptide aptamer inhibits CaV2.2 trafficking and reverses inflammatory and postoperative pain behaviors. PAIN, 156(7), 1247-1264.
BIO5 Collaborators
Rajesh Khanna, Tally M Largent-Milnes
Moutal, A., Dustrude, E. T., Largent-Milnes, T. M., Vanderah, T. W., Khanna, M., & Khanna, R. (2017). Blocking CRMP2 SUMOylation reverses neuropathic pain. Molecular psychiatry.
BIO5 Collaborators
Rajesh Khanna, Tally M Largent-Milnes
Marshall, T. M., Herman, D. S., Largent-Milnes, T. M., Badghisi, H., Zuber, K., Holt, S. C., Lai, J., Porreca, F., & Vanderah, T. W. (2012). Activation of descending pain-facilitatory pathways from the rostral ventromedial medulla by cholecystokinin elicits release of prostaglandin-E₂ in the spinal cord. Pain, 153(1), 86-94.

Cholecystokinin (CCK) has been suggested to be both pro-nociceptive and "anti-opioid" by actions on pain-modulatory cells within the rostral ventromedial medulla (RVM). One consequence of activation of RVM CCK₂ receptors may be enhanced spinal nociceptive transmission; but how this might occur, especially in states of pathological pain, is unknown. Here, in vivo microdialysis was used to demonstrate that levels of RVM CCK increased by approximately 2-fold after ligation of L₅/L₆ spinal nerves (SNL). Microinjection of CCK into the RVM of naïve rats elicited hypersensitivity to tactile stimulation of the hindpaw. In addition, RVM CCK elicited a time-related increase in (prostaglandin-E₂) PGE₂ measured in cerebrospinal fluid from the lumbar spinal cord. The peak increase in spinal PGE₂ was approximately 5-fold and was observed at approximately 80 minutes post-RVM CCK, a time coincident with maximal RVM CCK-induced mechanical hypersensitivity. Spinal administration of naproxen, a nonselective COX-inhibitor, significantly attenuated RVM CCK-induced hindpaw tactile hypersensitivity. RVM-CCK also resulted in a 2-fold increase in spinal 5-hydroxyindoleacetic acid (5-HIAA), a 5-hydoxytryptophan (5-HT) metabolite, as compared with controls, and mechanical hypersensitivity that was attenuated by spinal application of ondansetron, a 5-HT₃ antagonist. The present studies suggest that chronic nerve injury can result in activation of descending facilitatory mechanisms that may promote hyperalgesia via ultimate release of PGE₂ and 5-HT in the spinal cord.

Hanlon, K. E., Herman, D. S., Agnes, R. S., Largent-Milnes, T. M., Kumarasinghe, I. R., Ma, S. W., Guo, W., Lee, Y., Ossipov, M. H., Hruby, V. J., Lai, J., Porreca, F., & Vanderah, T. W. (2011). Novel peptide ligands with dual acting pharmacophores designed for the pathophysiology of neuropathic pain. Brain research, 1395, 1-11.

The conventional design of high affinity drugs targeted to a single molecule has not resulted in clinically useful therapies for pain relief. Recent reviews have suggested that newly designed analgesic drugs should incorporate multiple targets. The distributions of cholecystokinin (CCK) and CCK receptors in the central nervous system (CNS) overlap significantly with endogenous opioid systems and can be dually targeted. CCK has been shown to act as an endogenous "anti-analgesic" peptide and neuropathic pain conditions promote endogenous CCK release in CNS regions of pain modulation. Administration of CCK into nuclei of the rostral ventromedial medulla induces pronociceptive behaviors in rats. RSA 504 and RSA 601 are novel bifunctional compounds developed to target neuropathic pain by simultaneously acting as agonists at two distinct opioid receptors and antagonizing CCK receptors in the CNS. RSA 504 and RSA 601 demonstrate agonist activity in vitro and antihypersensitivity to mechanical and thermal stimuli in vivo using the spinal nerve ligation model of neuropathic pain. Intrathecal administration of RSA 504 and RSA 601 did not demonstrate antinociceptive tolerance over 7 days of administration and did not display motor impairment or sedation using a rotarod. These are the first behavioral studies that demonstrate how multi-targeted molecule design can address the pathology of neuropathic pain. These compounds with δ and μ opioid agonist activity and CCK antagonist activity within one molecule offer a novel approach with efficacy for neuropathic pain while lacking the side effects typically caused by conventional opioid therapies.