Tally M Largent-Milnes

Tally M Largent-Milnes

Assistant Professor, Pharmacology
Assistant Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-6400

Research Interest

Dr. Tally Largent-Milnes Ph.D., is a Research Assistant Professor of Pharmacology at the University of Arizona. Dr. Largent-Milnes is a member of the International Association for the Study of Pain, the Society for Neuroscience, and the American Pain Society. Her major research focus is on trigeminal (Vc) synaptic physiology, neuropathic pain and rational design of multifunctional compounds to treat chronic pain. Dr. Largent-Milnes uses whole-cell patch clamp electrophysiology, immunohistochemistry, behavior, and pharmacology, to explore excitatory synaptic transmission between trigeminal afferents and nucleus caudalis (Vc) neurons as well as the adaptations that accompany certain pathologies/pharmacological interventions. Her work is critical to improve our understanding of the construction of the trigeminal system at the synaptic level, and will allow for the development of better therapeutics to treat select craniofacial pain disorders through her research.

Publications

Deekonda, S., Cole, J., Sunna, S., Rankin, D., Largent-Milnes, T. M., Davis, P., BassiriRad, N. M., Lai, J., Vanderah, T. W., Porecca, F., & Hruby, V. J. (2016). Enkephalin analogues with N-phenyl-N-(piperidin-2-ylmethyl)propionamide derivatives: Synthesis and biological evaluations. Bioorganic & medicinal chemistry letters, 26(1), 222-7.

N-Phenyl-N-(piperidin-2-ylmethyl)propionamide based bivalent ligands are unexplored for the design of opioid based ligands. Two series of hybrid molecules bearing N-phenyl-N-(piperidin-2-ylmethyl)propionamide derived small molecules conjugated with an enkephalin analogues with and without a linker (β-alanine) were designed and synthesized. Both bivalent ligand series exhibited remarkable binding affinities from nanomolar to subnanomolar range at both μ and δ opioid receptors and displayed potent agonist activities as well. The replacement of Tyr with Dmt and introduction of a linker between the small molecule and enkephalin analogue resulted in highly potent ligands. Both series of ligands showed excellent binding affinities at both μ (0.6-0.9nM) and δ (0.2-1.2nM) opioid receptors respectively. Similarly, these bivalent ligands exhibited potent agonist activities in both MVD and GPI assays. Ligand 17 was evaluated for in vivo antinociceptive activity in non-injured rats following spinal administration. Ligand 17 was not significantly effective in alleviating acute pain. The most likely explanations for this low intrinsic efficacy in vivo despite high in vitro binding affinity, moderate in vitro activity are (i) low potency suggesting that higher doses are needed; (ii) differences in experimental design (i.e. non-neuronal, high receptor density for in vitro preparations versus CNS site of action in vitro); (iii) pharmacodynamics (i.e. engaging signalling pathways); (iv) pharmacokinetics (i.e. metabolic stability). In summary, our data suggest that further optimisation of this compound 17 is required to enhance intrinsic antinociceptive efficacy.

Yamamoto, T., Nair, P., Largent-Milnes, T. M., Jacobsen, N. E., Davis, P., Ma, S., Yamamura, H. I., Vanderah, T. W., Porreca, F., Lai, J., & Hruby, V. J. (2011). Discovery of a potent and efficacious peptide derivative for δ/μ opioid agonist/neurokinin 1 antagonist activity with a 2',6'-dimethyl-L-tyrosine: in vitro, in vivo, and NMR-based structural studies. Journal of medicinal chemistry, 54(7), 2029-38.

Multivalent ligands with δ/μ opioid agonist and NK1 antagonist activities have shown promising analgesic potency without detectable sign of toxicities, including motor skill impairment and opioid-induced tolerance. To improve their biological activities and metabolic stability, structural optimization was performed on our peptide-derived lead compounds by introducing 2',6'-dimethyl-L-tyrosine (Dmt) instead of Tyr at the first position. The compound 7 (Dmt-D-Ala-Gly-Phe-Met-Pro-Leu-Trp-NH-[3',5'-(CF(3))(2)-Bzl]) showed improved multivalent bioactivities compared to those of the lead compounds, had more than 6 h half-life in rat plasma, and had significant antinociceptive efficacy in vivo. The NMR structural analysis suggested that Dmt(1) incorporation in compound 7 induces the structured conformation in the opioid pharmacophore (N-terminus) and simultaneously shifts the orientation of the NK1 pharmacophore (C-terminus), consistent with its affinities and activities at both opioid and NK1 receptors. These results indicate that compound 7 is a valuable research tool to seek a novel analgesic drug.

Slosky, L. M., Largent-Milnes, T. M., & Vanderah, T. W. (2015). Use of Animal Models in Understanding Cancer-induced Bone Pain. Cancer growth and metastasis, 8(Suppl 1), 47-62.

Many common cancers have a propensity to metastasize to bone. Although malignancies often go undetected in their native tissues, bone metastases produce excruciating pain that severely compromises patient quality of life. Cancer-induced bone pain (CIBP) is poorly managed with existing medications, and its multifaceted etiology remains to be fully elucidated. Novel analgesic targets arise as more is learned about this complex and distinct pain state. Over the past two decades, multiple animal models have been developed to study CIBP's unique pathology and identify therapeutic targets. Here, we review animal models of CIBP and the mechanistic insights gained as these models evolve. Findings from immunocompromised and immunocompetent host systems are discussed separately to highlight the effect of model choice on outcome. Gaining an understanding of the unique neuromolecular profile of cancer pain through the use of appropriate animal models will aid in the development of more effective therapeutics for CIBP.

Deekonda, S., Wugalter, L., Rankin, D., Largent-Milnes, T. M., Davis, P., Wang, Y., Bassirirad, N. M., Lai, J., Kulkarni, V., Vanderah, T. W., Porreca, F., & Hruby, V. J. (2015). Design and synthesis of novel bivalent ligands (MOR and DOR) by conjugation of enkephalin analogues with 4-anilidopiperidine derivatives. Bioorganic & medicinal chemistry letters, 25(20), 4683-8.

We describe the design and synthesis of novel bivalent ligands based on the conjugation of 4-anilidopiperidine derivatives with enkephalin analogues. The design of non-peptide analogues is explored with 5-amino substituted (tetrahydronaphthalen-2yl) methyl containing 4-anilidopiperidine derivatives, while non-peptide-peptide ligands are explored by conjugating the C-terminus of enkephalin analogues (H-Xxx-DAla-Gly-Phe-OH) to the amino group of 4-anilidopiperidine small molecule derivatives with and without a linker. These novel bivalent ligands are evaluated for biological activities at μ and δ opioid receptors. They exhibit very good affinities at μ and δ opioid receptors, and potent agonist activities in MVD and GPI assays. Among these the lead bivalent ligand 17 showed excellent binding affinities (0.1 nM and 0.5 nM) at μ and δ opioid receptors respectively, and was found to have very potent agonist activities in MVD (56 ± 5.9 nM) and GPI (4.6 ± 1.9 nM) assays. In vivo the lead bivalent ligand 17 exhibited a short duration of action (15 min) comparable to 4-anilidopiperidine derivatives, and moderate analgesic activity. The ligand 17 has limited application against acute pain but may have utility in settings where a highly reversible analgesic is required.

Tumati, S., Largent-Milnes, T. M., Keresztes, A., Ren, J., Roeske, W. R., Vanderah, T. W., & Varga, E. V. (2012). Repeated morphine treatment-mediated hyperalgesia, allodynia and spinal glial activation are blocked by co-administration of a selective cannabinoid receptor type-2 agonist. Journal of neuroimmunology, 244(1-2), 23-31.

Spinal glial activation has been implicated in sustained morphine-mediated paradoxical pain sensitization. Since activation of glial CB2 cannabinoid receptors attenuates spinal glial activation in neuropathies, we hypothesized that CB2 agonists may also attenuate sustained morphine-mediated spinal glial activation and pain sensitization. Our data indicate that co-administration of a CB2-selective agonist (AM 1241) attenuates morphine (intraperitoneal; twice daily; 6 days)-mediated thermal hyperalgesia and tactile allodynia in rats. A CB2 (AM 630) but not a CB1 (AM 251) antagonist mitigated this effect. AM 1241 co-treatment also attenuated spinal astrocyte and microglial marker and pro-inflammatory mediator (IL-1β, TNFα) immunoreactivities in morphine-treated rats, suggesting that CB2 agonists may be useful to prevent the neuroinflammatory consequences of sustained morphine treatment.