Yann C Klimentidis

Yann C Klimentidis

Associate Professor, Public Health
Assistant Professor, Genetics - GIDP
Associate Professor, BIO5 Institute
Primary Department
Contact
(520) 621-0147

Work Summary

I use human genetic data to find associations of genetic markers with complex traits and diseases, to shed light on disease pathophysiology, causal pathways, and health disparities, and to inform precision medicine.

Research Interest

Yann C. Klimentidis, PhD, is an Associate Professor in the Department of Epidemiology and Biostatistics in the Mel and Enid Zuckerman College of Public Health at the University of Arizona. His research centers on improving our understanding of the links between genetic variation, lifestyle factors, metabolic disease, and health disparities. In the past, he has used measures of genetic admixture and genomic tests of natural selection to understand the genetic basis of population differences in disease susceptibility. His most recent work examines the use various statistical approaches for the analysis of high-dimensional genetic data for improving prediction of genetic susceptibility to type-2 diabetes. In addition, his work examines gene-by-lifestyle interactions in type-2 diabetes, as well as understanding the causal links between metabolic traits such as dyslipidemia and type-2 diabetes. Keywords: Genetics, epidemiology, Cardiometabolic disease, Physical activity

Publications

Aslibekyan, S., Vaughan, L. K., Wiener, H. W., Lemas, D. J., Klimentidis, Y. C., Havel, P. J., Stanhope, K. L., O'brien, D. M., Hopkins, S. E., Boyer, B. B., & Tiwari, H. K. (2014). Evidence for novel genetic loci associated with metabolic traits in Yup'ik people. American journal of human biology : the official journal of the Human Biology Council, 25(5).

To identify genomic regions associated with fasting plasma lipid profiles, insulin, glucose, and glycosylated hemoglobin in a Yup'ik study population, and to evaluate whether the observed associations between genetic factors and metabolic traits were modified by dietary intake of marine derived omega-3 polyunsaturated acids (n-3 PUFA).

Klimentidis, Y. C., Zhou, J., & Kittles, R. A. (2015). Among men only, West-African genetic ancestry is associated with lower central adiposity. International Journal of Obesity.
Lebron-Aldea, D., Dhurandhar, E. J., Perez-Rodriguez, P., Klimentidis, Y. C., Tiwari, H. K., & Vazquez, A. I. (2014). Genome-enabled models for type 2 diabetes risk assessment. Frontiers in Genetics.
de Los Campos, G., Vazquez, A. I., Fernando, R., Klimentidis, Y. C., & Sorensen, D. (2013). Prediction of complex human traits using the genomic best linear unbiased predictor. PLoS genetics, 9(7).

Despite important advances from Genome Wide Association Studies (GWAS), for most complex human traits and diseases, a sizable proportion of genetic variance remains unexplained and prediction accuracy (PA) is usually low. Evidence suggests that PA can be improved using Whole-Genome Regression (WGR) models where phenotypes are regressed on hundreds of thousands of variants simultaneously. The Genomic Best Linear Unbiased Prediction (G-BLUP, a ridge-regression type method) is a commonly used WGR method and has shown good predictive performance when applied to plant and animal breeding populations. However, breeding and human populations differ greatly in a number of factors that can affect the predictive performance of G-BLUP. Using theory, simulations, and real data analysis, we study the performance of G-BLUP when applied to data from related and unrelated human subjects. Under perfect linkage disequilibrium (LD) between markers and QTL, the prediction R-squared (R(2)) of G-BLUP reaches trait-heritability, asymptotically. However, under imperfect LD between markers and QTL, prediction R(2) based on G-BLUP has a much lower upper bound. We show that the minimum decrease in prediction accuracy caused by imperfect LD between markers and QTL is given by (1-b)(2), where b is the regression of marker-derived genomic relationships on those realized at causal loci. For pairs of related individuals, due to within-family disequilibrium, the patterns of realized genomic similarity are similar across the genome; therefore b is close to one inducing small decrease in R(2). However, with distantly related individuals b reaches very low values imposing a very low upper bound on prediction R(2). Our simulations suggest that for the analysis of data from unrelated individuals, the asymptotic upper bound on R(2) may be of the order of 20% of the trait heritability. We show how PA can be enhanced with use of variable selection or differential shrinkage of estimates of marker effects.

Klimentidis, Y. C., Arora, A., Zhou, J., Kittles, R., & Allison, D. B. (2016). The Genetic Contribution of West-African Ancestry to Protection against Central Obesity in African-American Men but Not Women: Results from the ARIC and MESA Studies. Frontiers in genetics, 7, 89.

Over 80% of African-American (AA) women are overweight or obese. A large racial disparity between AA and European-Americans (EA) in obesity rates exists among women, but curiously not among men. Although socio-economic and/or cultural factors may partly account for this race-by-sex interaction, the potential involvement of genetic factors has not yet been investigated. Among 2814 self-identified AA in the Atherosclerosis Risk in Communities study, we estimated each individual's degree of West-African genetic ancestry using 3437 ancestry informative markers. We then tested whether sex modifies the association between West-African genetic ancestry and body mass index (BMI), waist-circumference (WC), and waist-to-hip ratio (WHR), adjusting for income and education levels, and examined associations of ancestry with the phenotypes separately in males and females. We replicated our findings in the Multi-Ethnic Study of Atherosclerosis (n = 1611 AA). In both studies, we find that West-African ancestry is negatively associated with obesity, especially central obesity, among AA men, but not among AA women (pinteraction = 4.14 × 10(-5) in pooled analysis of WHR). In conclusion, our results suggest that the combination of male gender and West-African genetic ancestry is associated with protection against central adiposity, and suggest that the large racial disparity that exists among women, but not men, may be at least partly attributed to genetic factors.