Yin Chen

Yin Chen

Professor, Pharmacology and Toxicology
Member of the Graduate Faculty
Assistant Professor, BIO5 Institute
Primary Department
Contact
(520) 626-4715

Research Interest

Yin Chen, PhD. is an Assistant Professor in Pharmacology and Toxicology in the College of Pharmacy at UA. Dr. Chen’s research focus is on epithelial biology. He was a research faculty in University of California, Davis and an Assistant Investigator in Chemical Industry Institute of Toxicology (former CIIT and later Hamner Institute). His long-term research objective is to understand the dysfunction of airway epithelial mucosa in the pathogenesis of a variety of acute and chronic airway diseases. His current research programs are: a) understanding the molecular mechanisms underlying airway mucous cell development and mucous cell metaplasia in chronic diseases including cancer, COPD and asthma; (b) understanding the function and regulation of novel COPD associated genes and developing novel compounds to treat COPD; (c) understanding the impact of fungal exposure on airway innate immunity and its contribution to the development and exacerbation of asthma. Dr. Chen has more than 30 publications including peer-reviewed research articles, reviews and book chapters. He has served as the PI on one R01, two R21, one Flight Attendant Medical Institute (FAMRI) Innovative Clinical Award and one Arizona Biomedical Research Commission Award. He has also served as co-PI on two R01 and one P01 grants. He has built a long productive track record in studying airway mucus production and respiratory viral infection using primary airway epithelial cell model. He routinely cultivate and use primary epithelial cells from eye, salivary gland, airway surface and submucosal gland in different species (e.g. human, monkey, pig, rat and mouse) as our in vitro model to study mucin genes. The differentiated primary culture model demonstrates pseudostratified morphology, is composed of ciliated, non-ciliated, and goblet cells, and has a transepithelial barrier with high electro-resistance. He has also established in vivo exposure system to study the pulmonary effect of the exposure to particulates, pathogens and gases. Using this system, he has developed various airway disease models including CS-induced COPD model, ovalbumin-induced asthma model, fungal-induced asthma model and several infection models such as H1N1, rhinovirus, Aspergillus, and Alternaria.

Publications

Chen, Y., Zhao, Y. H., & Wu, R. (2001). Differential regulation of airway mucin gene expression and mucin secretion by extracellular nucleotide triphosphates. American Journal of Respiratory Cell and Molecular Biology, 25(4), 409-417.

PMID: 11694445;Abstract:

The effects of extracellular nucleotide triphosphates on the stimulation of mucin production by airway epithelial cells were examined. The order of potency in stimulating mucin secretion in primary cultures of human tracheobronchial epithelial cells is: uridine 5′-triphosphate (UTP) ≈ adenosine 5′-triphosphate (ATP) ≈ ATP-γ-S > uridine 5′-diphosphate ≈ adenosine 5′-diphosphate > α,β-methylene ATP >> adenosine. However, only UTP can increase mucin gene (MUC5AC, MUC5B) expression; ATP and other analogues have no stimulatory effect. The stimulation of MUC5AC and MUC5B expression by UTP is time- and dose-dependent. A similar effect on the elevation of mucous cell population in mouse airway epithelium can be demonstrated in vivo by an intratracheal instillation of UTP-saline solution. The stimulatory effect of UTP or ATP on mucin secretion was inhibited by pertussis toxin, U73122, and Calphostin C, but not by PD98059, suggesting a G-protein/phospholipase (PL) C/protein kinase (PK) C-dependent and mitogen-activated protein kinase (MAPK)-independent signaling pathway. However, the stimulatory effect of UTP on mucin gene expression was sensitive to pertussis toxin and PD98059, but not to Calphostin C and U73122, suggesting a G-protein/MAPK-dependent and PLC/PKC-independent signaling pathway. These findings are the first demonstration that UTP, a pyrimidine nucleotide triphosphate, can enhance both mucin secretion and mucin gene expression through different signaling pathways.

Lee, W., Chen, Y., Wang, W., & Mosser, A. (2015). Growth of human rhinovirus in H1-HeLa cell suspension culture and purification of virions. Methods in molecular biology (Clifton, N.J.), 1221, 49-61.

HeLa cell culture is the most widely used system for in vitro studies of the basic biology of human rhinovirus (HRV). It is also useful for making sufficient quantities of virus for experiments that require highly concentrated and purified virus. This chapter describes the protocols for producing a large amount of HeLa cells in suspension culture, using these cells to grow a large quantity of virus of HeLa-adapted HRV-A and -B serotypes, and making highly concentrated virus stock and highly purified virions. These purified HRV virions are free of cellular components and suitable for experiments that are sensitive to cellular contaminations.

Zhu, L., Lee, B., Zhao, F., Zhou, X., Chin, V., Ling, S. C., & Chen, Y. (2014). Modulation of airway epithelial antiviral immunity by fungal exposure. American journal of respiratory cell and molecular biology, 50(6), 1136-43.

Multiple pathogens, such as bacteria, fungi, and viruses, have been frequently found in asthmatic airways and are associated with the pathogenesis and exacerbation of asthma. Among these pathogens, Alternaria alternata (Alt), a universally present fungus, and human rhinovirus have been extensively studied. However, their interactions have not been investigated. In the present study, we tested the effect of Alt exposure on virus-induced airway epithelial immunity using live virus and a synthetic viral mimicker, double-stranded RNA (dsRNA). Alt treatment was found to significantly enhance the production of proinflammatory cytokines (e.g., IL-6 and IL-8) induced by virus infection or dsRNA treatment. In contrast to this synergistic effect, Alt significantly repressed type I and type III IFN production, and this impairment led to elevated viral replication. Mechanistic studies suggested the positive role of NF-κB and mitogen-activated protein kinase pathways in the synergism and the attenuation of the TBK1-IRF3 pathway in the inhibition of IFN production. These opposite effects are caused by separate fungal components. Protease-dependent and -independent mechanisms appear to be involved. Thus, Alt exposure alters the airway epithelial immunity to viral infection by shifting toward more inflammatory but less antiviral responses.