Biophysics

Joseph C Watkins

Director, Data Science Academy
Professor, Mathematics
Professor, Public Health
Professor, Applied Mathematics - GIDP
Professor, Genetics - GIDP
Professor, Statistics-GIDP
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 621-5245

Research Interest

Joseph C. Watkins is Professor of Mathematics and Chair of the Graduate Interdisciplinary Program in Statistics at the University of Arizona. Dr. Watkins has published works in the foundations of the theory of probability and has collaborated extensively with researchers in a variety of the life sciences, notably, genetics, biophysics, anthropology, bacteriology, entomology, and biochemistry. He was recognized in 2009 by the College of Science for his contributions in being named a Galileo Circle Fellow. Dr. Watkins work includes both new results in stochastic modeling and in both the theoretical and practical aspects of statistics. His research interests are broad, from understanding the mechanism of the Africanization of the honeybee to the dynamics of single molecule motors to the ancient structure of human populations in Africa. Dr. Watkins has been a leader at the University of Arizona in the interdisciplinary training at the biology/math interface both at the undergraduate and graduate level. He has been a co-investigator for an IGERT training grant and is a member of the steering committee for an NIH training grant housed in an Applied Mathematics Program. In addition, Dr. Watkins serves as the chair of the Undergraduate Biology Research Program’s Biomath Committee.

Koen Visscher

Associate Professor, Physics
Associate Professor, Molecular and Cellular Biology
Associate Professor, Optical Sciences
Associate Professor, Applied Mathematics - GIDP
Associate Professor, BIO5 Institute
Primary Department
Department Affiliations

Research Interest

Koen Visscher is an Associate Professor in the Department of Physics with an interest in Biological Physics. He holds joint appointments in Molecular and Cellular Biology as well as in the College of Optical Sciences, and is a member of the Applied Mathematics Graduate Interdisciplinary Program. His research focuses on the role of mechanical force in Biology using single-molecule techniques such as optical tweezers. He pioneered the so called molecular force clamp, a feedback controlled optical tweezers that is able to maintain a constant force on a single individual moving motor protein. Recent interests are RNA structure, nucleic acid-protein interactions interactions, and translational recoding via -1 frameshifting.

Judith Su

Assistant Professor, Biomedical Engineering
Assistant Professor, Optical Sciences
Assistant Research Scientist, Chemistry and Biochemistry
Assistant Professor, BIO5 Institute
Primary Department
Contact
(520) 621-4240

Research Interest

Judith Su is an Assistant Professor in Biomedical Engineering and an Assistant Professor of Optical Sciences at the University of Arizona. She is also an Associate Member of the University of Arizona Cancer Center. Judith received her B.S. and M.S. from MIT in Mechanical Engineering and her Ph.D. from Caltech in Biochemistry & Molecular Biophysics. Her background is in imaging, microfabrication, and optical instrument building for biological and medical applications. In general, her research interests are to develop new imaging, sensing, and rheological techniques to reveal basic biological functions at the molecular, cellular, and tissue levels. Recently her work has centered on label-free single molecule detection using microtoroid optical resonators with a focus on basic research, and translational medicine through the development of miniature field portable devices.

Steven D Schwartz

Professor, Chemistry and Biochemistry-Sci
Professor, Applied Mathematics - GIDP
Regents Professor
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 621-6363

Research Interest

My research interests relate to the theoretical chemistry and biophysics of complex systems. Current areas of funded research include the study of protein dynamics in enzymatic reactions, quantum tunneling in enzymatic reactions, modeling of the cardiac thin filament with application to disease mechanism, and the study of the properties of micelles created from green surfactants. I am chair elect of the biological physics division of the American Physical Society, a Fellow of the APS and the AAAS.

Ronald M Lynch

Professor, Physiology
Associate Professor, Pharmacology
Professor, Biomedical Engineering
Professor, Physiological Sciences - GIDP
Director, Aribi Institute
Associate Director, Shared Resources
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-2472

Work Summary

Precise diagnosis and treatment of disease requires an ability to target agents to specific tissues and cell types within those tissues. We are developing agents that exhibit cell type specificity for these purposes.

Research Interest

Ron Lynch received a B.S. from the University of Miami (1978) with a dual major in Chemistry (Physical) and Biology, and a Ph.D. degree from the University of Cincinnati (1984) in Physiology and Biophysics. Dr. Lynch began training in optical imaging and MR spectroscopy of cardiac metabolism while at the NIH/NHLBI under the direction of Dr. Robert Balaban from 1984-1987. In 1987, Dr. Lynch moved to a staff position in the Biomedical Imaging Group with appointment in the Physiology Department at the University of Massachusetts Medical Center where he was involved in the development of approaches for 3-dimensional imaging including deconvolution and confocal microscopy. Dr. Lynch joined the faculty of the University of Arizona in 1990 with dual appointment in the Departments of Physiology and Pharmacology, and is currently a full professor, and director of the Arizona Research Institute for Biomedical Imaging. In 2000, Dr. Lynch was a visiting scientist at the Laboratory of Functional and Molecular Imaging and the Magnetic Resonance Imaging Center with Dr. Alan Koretsky at the NIH/NINDS. Dr. Lynch is a member of the Biophysical Society, the American Physiological Society and American Diabetes Association, and regularly serves on grant review panels for the JDRF, NIH/NIDDK, and NSF. Research in the Lynch lab focuses on second messenger signaling in vascular smooth muscle cells and nutrient sensing cells (e.g., Pancreatic Beta-cells) with emphasis on alterations in signaling that occur during development of Diabetes. We are developing methods to modify and analyze beta cell mass in order to evaluate the initiation of the pre-diabetic state, and efficacy of its treatment. Analyses of subcellular protein distributions, second messenger signaling, and ligand binding is performed in our lab using state of the art microscopy and analysis approaches which is our second area of expertise. Over the past 3 decades, our lab has been involved in the development of unique microscopic imaging and spectroscopy approaches to study cell and tissue function, as well as screening assays for cell signaling and ligand binding. Keywords: Diabetes, Cancer, Optical Imaging, Targeted Contrast Agents, Metabolism, Biomedical Imaging, Drug Development

Andrew P Capaldi

Associate Professor, Molecular and Cellular Biology
Associate Professor, Genetics - GIDP
Associate Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Contact
(520) 626-9376

Research Interest

Andrew Capaldi, PhD, researches the signaling pathways and transcription factors in a cell that are organized into circuits. They allow cells to process information and make decisions. For Dr. Capaldi, the work arises in understanding both how these circuits are built from their components, and how they function and malfunction. To address these questions, he is working to reverse engineer the circuitry that controls cell growth in budding yeast using a combination of genomic, proteomic and computational methods. http://capaldilab.mcb.arizona.edu

Minying Cai

Research Professor
Research Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 621-8617

Work Summary

Peptides and proteins play a vital role in almost every cellular process in living organisms. Our research discovers and determines structural information on peptides and proteins to design drugs to more effectively treat human disease.

Research Interest

Dr. Minying Cai is currently a research professor in the Department of Chemistry and Biochemistry at the University of Arizona. She has been working in the Chemistry & Biochemistry department for more than 16 years and has more than 100 publications in the area of novel drug discovery for obesity, diabetes, cancer and pain. Dr. Cai received the Ph.D. at the University of Arizona in Biochemistry and Molecular Biophysics in 2004. Before that, she had been working in Shanghai Institute of Materia Medica; Shanghai Research Center of Biotechnology in Chinese Academy of Sciences. Dr. Cai has been working on peptide based drug discovery for more than 23 years, starting with discovery of developing anti-microbial peptide and insulin related peptide drug. Sixteen years ago, she started working on melanotropin and opioid related drug discovery. Dr. Cai's research in peptides involves highly multidisciplinary areas including chemistry and biochemistry; molecular pharmacology, molecular imaging, and cancer research, with expertise in molecular pharmacology, synthetic, organic and peptide methodology, chemical and biophysical analysis and evaluation, and in vitro and in vivo expression. Dr. Cai is currently working on several projects at the interface of chemistry, pharmacology and biology within the areas of: 1. Structure based drug design and synthesis of GPCR ligands, including developing selective hMCRs ligand; 2. Developing novel biophysics tools for molecular imaging; novel biomarker for high-throughput screening system. 3. Exploiting novel scaffold via computational chemistry for small molecule therapeutics for energy balance and cancer study; 4. Creating a nanostructured integrated platform for biodetection and imaging-guided therapy. Keywords: Drug Discovery, Melanoma Prevention, neurodegenerative diseases, Obesity and Diabetes, Melanocortin System

Michael F Brown

Professor, Chemistry and Biochemistry-Sci
Professor, Applied Mathematics - GIDP
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 621-2163

Research Interest

Michael F. Brown is Professor of Chemistry & Biochemistry at the University of Arizona. He is co-director of the Biological Physics Program and the Chemical Physics Program, and was a co-founder of the Biological Chemistry Program at the University of Arizona. He is internationally renowned for his work on the molecular basis of activation of G-protein-coupled receptors that are the targets for the majority of pharmaceuticals and medicines used by humans. The focus of his work is on biomembranes, with a particular emphasis on lipid-protein interactions in relation to potential drug targets involving membrane proteins. He is involved with investigation of the molecular basis of visual signaling involving rhodopsin. Moreover, Professor Brown is an expert in nuclear magnetic resonance (NMR) spectroscopy. His activities in the area of biomolecular NMR spectroscopy involve the devolvement and application of methods for studying the structure and dynamics of biomolecules. Michael Brown has authored over 130 original research papers, 10 book chapters, 4 book reviews, and has published more than 275 abstracts. His current H-index is 43. He numbers among his coworkers various prominent scientists worldwide. He presents his work frequently at national and international conferences, and is the recipient of a number of major awards. Professor Brown's many contributions have established him as a major voice in the area of biomembrane research and biomolecular spectroscopy. He is frequently a member of various review panels and exerts an influence on science policy at the national level. Among his accolades, he is an elected Fellow of the American Association for the Advancement of Science; American Physical Society; Japan Society for the Promotion of Science; and the Biophysical Society. He is a Fellow of the Galileo Circle of the University of Arizona. Most recently, he received the Avanti Award of the Biophysical Society. This premier honor recognizes his vast and innovative contributions to the field of membrane biophysics, and groundbreaking work in the development of NMR techniques to characterize lipid structure and dynamics. Most recently he presented the 2014 Avanti lecture of the Biophysical Society.