Epidemiology

Casey E Romanoski

Associate Professor, Cellular and Molecular Medicine
Associate Professor, Clinical Translational Sciences
Associate Professor, Genetics - GIDP
Associate Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-7244

Work Summary

My laboratory aims to identify the genetic and environmental reasons that certain individuals are predisposed to develop complex diseases like heart disease. We use new technologies, experimental, and computational approaches to identify molecular patterns indicative of disease predisposition.

Research Interest

Our laboratory is both experimental and computational. We use next-generation sequencing technologies to measure genome-wide molecular phenotypes. By leveraging the interconnected relationships between DNA sequence, transcription factor binding, chromatin modification, and gene expression, we study how cells achieve context-appropriate expression patterns and signal responsiveness. Lab Website: www.romanoskilab.com Keywords: Genetics, Genomics, Vascular Biology, Bioinformatics

Michael A Riehle

Professor, Entomology
Professor, Entomology / Insect Science - GIDP
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-8500

Work Summary

Our work seeks to develop novel approaches towards controlling mosquito-borne diseases. We are interested in better understanding the relationship between the mosquito vector and the pathogens they transmit. Through genetic engineering we hope to generate fit, pathogen resistant mosquitoes that could be used to control the spread of mosquito-borne diseases.

Research Interest

Our lab is interested in unraveling the genetics of aging and immunity in mosquitoes. By understanding these processes we can develop new strategies for controlling mosquito borne diseases. One of the greatest challenges mosquito borne parasites face within the vector is the mosquito's limited lifespan. For example, An. gambiae mosquitoes, the primary vector of malaria in sub-Sahara Africa, typically survive only two to three weeks in the wild. Since any parasites still within the mosquito when it perishes die as well, it is in the parasite's best interest to move on to the next vertebrate host as quickly as possible. Surprisingly, many mosquito borne diseases require up to two weeks of development in the mosquito before they can be passed back to the vertebrate host. This obligate incubation period within the mosquito provides an ideal target for controlling a range of insect borne diseases. Similarly, the mosquito immune system mounts a robust response against many pathogens, but not all. Expanding our understanding of mosquito immunity may allow us to manipulate mosquito immunity and limit their ability to transmit the most dangerous human pathogens. Both aging and immunity are regulated in part by the insulin/insulin grown factor 1 signaling (IIS) cascade. Our lab, in collaboration with researchers at University of Idaho, is manipulating IIS in various mosquito tissues to develop mosquitoes incapable of transmitting human pathogens such as malaria. A second major focus in our lab, in collaboration with researchers at UA and other institutions, is to understand the risk of dengue virus transmission in the Southern United States. Dengue is a mosquito transmitted virus that can cause fever, aches and in severe cases hemorrhaging and death. Although this virus is not yet found in the US, the primary mosquito vector is abundant. We are comparing mosquitoes from southern Arizona and dengue endemic areas in Northern Mexico to assess the risk of local dengue transmission. Specifically, we are examining mosquito population density, lifespan, blood-feeding preferences, the ability of the mosquitoes to transmit the virus and the virus developmental time in mosquito populations from southern Arizona and Northern Mexico. Keywords: Mosquito, vector-borne, arbovirus, malaria

Kristen M Pogreba Brown

Associate Veterinary Specialist, Animal and Comparative Biomedical Sciences
Assistant Professor, Public Health
Member of the Graduate Faculty
Assistant Professor, BIO5 Institute
Primary Department
Contact
(520) 626-3076

Research Interest

Kristen Pogreba Brown, Ph.D., M.P.H., is an assistant professor of epidemiology at the University of Arizona Mel and Enid Zuckerman College of Public Health. Prior to joining the faculty, Dr. Pogreba-Brown was an Epidemiologist with the College as the director of the Student Aid for Field Epidemiology Response (SAFER) team. In addition to continuing to oversee the SAFER program, her research projects are focused on foodborne diseases and improving methodology to respond to outbreak investigations. She is currently working on a project to identify the risk factors related to foodborne infection as well as the risk factors related to specific chronic outcomes following acute disease. She has recently initiated a One Health Program at the University to form collaborative research teams from across campus and develop a graduate level certificate program. She is also actively involved in public health preparedness activities, specifically for large events. Dr. Pogreba-Brown works with various county health departments in Arizona as well as the state health department to aid in outbreak investigations and serves on the state’s Foodborne Taskforce Committee.

Roger L Miesfeld

Distinguished Professor, Chemistry and Biochemistry
Professor, Chemistry and Biochemistry
Professor, Molecular and Cellular Biology
Professor, Entomology / Insect Science - GIDP
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-2343

Research Interest

Roger L. Miesfeld, Ph.D., Professor and Co-Chair, Dept. of Chemistry & Biochemistry, College of Science, University of Arizona. Mosquitoes are human disease vectors that transmit pathogens through blood feeding. One of these disease vectors is the Aedes aegypti mosquito, which have rapidly expanded their habitat and are contributing annually to 500,000 cases of Dengue hemorrhagic fever. On an even greater scale, Anopheline mosquitoes account for 250 million cases of malaria/yr, with up to 1 million deaths annually. The most common adult insecticides used for mosquito control are pyrethroids, which inhibit evolutionarily conserved sodium channels in the mosquito nervous system. Although these compounds have proven to be effective, mosquito resistance is an increasing problem and there is a pressing need to develop the next generation of safe and effective agents. Since blood meal feeding creates a unique metabolic challenge as a result of the extremely high protein and iron content of blood, it is possible that interfering with blood meal metabolism could provide a novel control strategy for mosquito born diseases. Our long term goal is to identify small molecule inhibitors that block blood meal metabolism in vector mosquitoes, resulting in feeding-induced death of the adult female, or a significant reduction in egg viability, as a strategy to control vector mosquito populations in areas of high disease transmission.

Yann C Klimentidis

Associate Professor, Public Health
Assistant Professor, Genetics - GIDP
Associate Professor, BIO5 Institute
Primary Department
Contact
(520) 621-0147

Work Summary

I use human genetic data to find associations of genetic markers with complex traits and diseases, to shed light on disease pathophysiology, causal pathways, and health disparities, and to inform precision medicine.

Research Interest

Yann C. Klimentidis, PhD, is an Associate Professor in the Department of Epidemiology and Biostatistics in the Mel and Enid Zuckerman College of Public Health at the University of Arizona. His research centers on improving our understanding of the links between genetic variation, lifestyle factors, metabolic disease, and health disparities. In the past, he has used measures of genetic admixture and genomic tests of natural selection to understand the genetic basis of population differences in disease susceptibility. His most recent work examines the use various statistical approaches for the analysis of high-dimensional genetic data for improving prediction of genetic susceptibility to type-2 diabetes. In addition, his work examines gene-by-lifestyle interactions in type-2 diabetes, as well as understanding the causal links between metabolic traits such as dyslipidemia and type-2 diabetes. Keywords: Genetics, epidemiology, Cardiometabolic disease, Physical activity

Stefano Guerra

Director, Epidemiology
Professor, Public Health
Professor, Medicine - (Tenure Track)
Research Scientist, Respiratory Sciences
Professor, BIO5 Institute
Contact
(520) 626-7411

Work Summary

Stefano Guerra's work includes an epidemiologic study, which used a household-based approach to assess prevalence and longitudinal changes in respiratory health. Other biomarker projects include a study on molecular biomarkers of asthma and COPD from the European Community Respiratory Health Survey.

Research Interest

Stefano Guerra, MD, PhD, is a professor of Medicine, the Director of the Population Science Unit at the Asthma and Airway Disease Research Center, and a leading expert in the natural history and biomarkers of obstructive lung diseases, including asthma and chronic obstructive pulmonary disease (COPD). As principal investigator, he is engaged in the leadership and coordination of multiple studies that use bio-specimens and phenotypic information from independent epidemiological cohorts to characterize the natural history, profile the risk factors, and identify novel biomarkers of lung diseases.

Dawn H Gouge

Professor, Entomology
Professor, Entomology / Insect Science - GIDP
Specialist, Entomology
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 374-6223

Work Summary

Public health entomologist and Integrated Pest Management (IPM) advocate working on pests that impact human health, and IPM in the built environment.

Research Interest

Dawn H. Gouge, PhD, is a Specialist and Professor at the University of Arizona, College of Agriculture and Life Science, Department of Entomology. Dr. Gouge is well established in the U.S. as a community Integrated Pest Management expert and works with international partners in several countries. Dawn has published 38 original research papers and more than 80 extension publications, many in collaboration with investigators from around the world, authored 4 book chapters and co-edited a definitive Pest Management Strategic Plan. Dr. Gouge is a frequent presenter at national and international meetings, and serves as a steering committee organizer of the International IPM Symposium conference. Dawn has received11 awards for outstanding achievement and provides service on both National and Federal advisory committees. Dr. Gouge has led the charge in establishing higher pest management standards in children’s environments, reducing risks associated with pest and pesticide exposure. Keywords: arthropod vectors, bed bugs, Integrated pest managment

Brian L Erstad

Department Head, Pharmacy Practice-Science
Professor, Pharmaceutical Sciences
Member of the Graduate Faculty
Professor, BIO5 Institute
Primary Department
Contact
(520) 626-4289

Work Summary

Brian Erstad’s research interests pertain to critical care medicine with an emphasis on patient safety and related outcomes research.

Research Interest

Brian L. Erstad, PharmD, FCCM, is currently a tenured professor and head of the Department of Pharmacy Practice and Science. He is also a center investigator for the Center for Health Outcomes and PharmacoEconomics Research and a co-director for the Arizona Clinical and Translational Research Graduate Certificate Program. His clinical responsibilities are performed at Banner-University Medical Center Tucson.Dr. Erstad’s research interests pertain to critical care medicine with an emphasis on patient safety and related outcomes research. He has authored more than 150 peer-reviewed articles and book chapters.Dr. Erstad has served on the board of directors of the American Society of Health-System Pharmacists and on numerous committees and task forces for other organizations including AHRQ, USP, Society of Critical Care Medicine and the American College of Chest Physicians. He is currently an ad hoc member of the FDA’s Drug Safety and Risk Management Advisory Committee, a steering committee member of the United States Critical Illness and Injury Trials (USCIIT) Group, and treasurer of the American College of Clinical Pharmacy.

Judith K Brown

Professor, Plant Science
Regents Professor, Plant Sciences
Research Associate Professor, Entomology
Professor, Entomology / Insect Science - GIDP
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 621-1402

Work Summary

Unravel the phylodynamics and transmission-specific determinants of emerging plant virus/fastidious bacteria-insect vector complexes, and translate new knowledge to abate pathogen spread in food systems.

Research Interest

Judith Brown, PhD, and her research interests include the molecular epidemiology of whitefly-transmitted geminiviruses (Begomoviruses, Family: Geminiviridae), the basis for virus-vector specificity and the transmission pathway, and the biotic and genetic variation between populations of the whitefly vector, B. tabaci, that influence the molecular epidemiology and evolution of begomoviruses. Keywords: Plant viral genomics, emergent virus phylodynamics, functional genomics of insect-pathogen interactions