Evolution

David A Baltrus

Associate Professor, Plant Sciences
Associate Professor, Animal and Comparative Biomedical Sciences
Associate Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 626-8215

Work Summary

We are interested in understanding the genetic basis for bacterial interactions with other organisms (be they plants, insects, fungi, other bacteria), and on how evolution shapes these interactions. By better understanding the rules and molecules that structure such relationships, we hope to develop new ways to manipulate these interactions (e.g. through the development of specific antimicrobial compounds) or shape their evolutionary dynamics through time.

Research Interest

David Baltrus (PhD) is broadly interested in understanding how bacterial evolution is shaped by interactions with other organisms. Questions investigated by the Baltrus lab range from asking how evolutionary events such as the transfer of genes between microbes affects the development of antibiotic resistance to testing how microbiomes impact the development and physiology of plants and animals. The lab approaches these questions by using a variety of existing tools, from screening for mutants using "toothpicks and agar plates" to experimental evolution to comparative genomics. However, Dr. Baltrus is also highly interested in developing new tools that enable sequencing and tracking of bacterial populations and communities of interest (like potential pathogens) in real time under natural conditions.

Alexander Badyaev

Professor, Ecology and Evolutionary Biology
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Contact
(520) 626-8830

Research Interest

Alex Badyaev’s research focus is at the interface of evolutionary developmental biology and evolutionary ecology, with specific focus on the understanding of the origin of adaptations. The central goal of his work is to understand the evolution of organismal architecture that reconciles innovation and adaptation. Under this general umbrella, Badyaev lab studies the following empirical themes: 1) Origin, development, and evolution of avian color diversity, 2) Epigenetic remodeling and genetic adaptation in ontogeny of skeletal structures, 3) Relationship between epigenetic and genetic inheritance systems, 4) Role of stress in origin and diversification of organismal forms, 5) Evolution of behavioral and life history strategies, and 6) Evolution and ecology of sexual size dimorphism.

Jana M U'Ren

Assistant Professor, Ecosystem Genomics
Assistant Professor, Agricultural-Biosystems Engineering
Assistant Professor, Animal and Comparative Biomedical Sciences
Assistant Professor, Genetics - GIDP
Assistant Professor, BIO5 Institute
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 621-1607

Work Summary

We study the biodiversity, biogeography, evolutionary origins, and ecological roles of plant-associated microorganisms. We use a combination of traditional culture-based microbiology, functional assays, and next-generation 'omics tools to study microbial symbiont communities in diverse lineages of land plants at scales ranging from local to global. We are interested in characterizing the biotic and abiotic factors shaping the assembly of plant-associated fungal communities, how community structure and diversity impacts ecosystem function, and the evolutionary dynamics of fungal symbiont evolution in the context of closely related pathogens and saprotrophs.

Research Interest

I am an integrative microbial ecologist with training in microbial ecology, evolutionary biology, mycology, and genomics. I am an Assistant Professor of Ecosystem Genomics in the Department of Agricultural and Biosystems Engineering and the BIO5 Institute. I completed a BA in Biological Sciences from the University of Missouri-Columbia and my PhD in Plant Pathology from University of Arizona’s School of Plant Sciences. Keywords: plant-microbe interactions, comparative genomics, microbial ecology, fungal endophytes

Luciano Matias Matzkin

Associate Professor, Entomology
Associate Professor, Ecology and Evolutionary Biology
Associate Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 621-1955

Work Summary

Understanding how genes and genomes are shaped over many generations by the environment in which organisms live in. We also aim to examine how these changes accumulate and might facilitate the genetic divergence between populations and eventually possibly the origin of species. Lastly we aim to leverage the power of genomics to understand the evolution of insecticide resistance in agricultural pests and to find solution to their management.

Research Interest

Our lab investigates how the ecology of a species shapes patterns of variation at multiple levels (genes, pathways, transcriptomes, genomes, physiology, behavior and life history), how populations adapt to environmental shifts (natural or human created), how genetic architecture can dictate the evolutionary trajectory of populations, the implication of ecological adaptation in the process of speciation and the role of sexual selection and sexual conflict in the evolution of reproductive incompatibilities. Our research revolves around these fundamental aspects of evolutionary biology. We work on a group of cactophilic Drosophila that inhabit the deserts of North America. These Drosophila species are an excellent system to study given that their ecology is well understood and the fact that we can perform many genetic, genomic, manipulative and life history experiments. In addition to utilizing the cactophilic Drosophila system we have ongoing projects on the agrigenomics of the agricultural pests, Drosophila suzukii (spotted wing Drosophila) and Helicoverpa zea (corn earworm). Keywords: Evolutionary, ecological and agricultural genomics

Joanna Masel

Professor, Ecology and Evolutionary Biology
Professor, Genetics - GIDP
Professor, Statistics-GIDP
Professor, Applied Mathematics - GIDP
Professor, Psychology
Member of the Graduate Faculty
Professor, BIO5 Institute
Primary Department
Contact
(520) 626-9888

Research Interest

Joanna Masel, D.Phil., is a Professor of Ecology & Evolutionary Biology, applying the tools of theoretical population genetics to diverse research problems. Her research program is divided between analytical theory, evolutionary simulations, and dry lab empirical bioinformatic work. The robustness and evolvability of living systems are major themes in her work, including questions about the origins of novelty, eg at the level of new protein-coding sequences arising during evolution from "junk" DNA. She also has interests in prion biology, and in the nature of both biological and economic competitions. She has won many awards, including a Fellowship at Wissenschaftskolleg zu Berlin, a Pew Scholarship in the Biomedical Sciences, an Alfred P. Sloan Research Fellow, a Rhodes Scholarship, and a Bronze Medal at the International Mathematical Olympiad.

Michael F Hammer

Associate Director, Omics
Research Scientist, Arizona Research Labs
Research Scientist, Ecology and Evolutionary Biology
Research Scientist, Neurology
Research Scientist, BIO5 Institute
Contact
(520) 621-9828

Work Summary

Michael Hammer has headed a productive research lab in human evolutionary genetics. His lab were early adopters of next generation sequencing (NGS) technology successfully employed NGS methods to identify molecular lesions causing neurodevelopmental disorders in undiagnosed children. His lab is also currently pursuing studies to identify modifier genes that alter the expression of major genes and how they contribute to phenotypic heterogeneity in Mendelian disorders.

Research Interest

Michael Hammer is a Research Scientist in the Division of Biotechnology at the University of Arizona with appointments in the Department of Neurology, Ecology and Evolutionary Biology, Bio5, the School of Anthropology, the University of Arizona Cancer Center, and the Steele Children's Research Center. Currently Dr. Hammer is interested in the use of the latest DNA sequencing technology to infer the underlying genetic architecture of neurodevelopmental diseases. Since 1991 Dr. Hammer has directed of the University of Arizona Genetics Core (UAGC), a facility that provides training and molecular biology services to University and biotechnology communities at large. After receiving his Ph.D. in Genetics at the University of California at Berkeley in 1984, he performed post-doctoral research at Princeton and Harvard. Over the past two decades, Dr. Hammer has headed a productive research lab in human evolutionary genetics, resulting in over 100 published articles documenting the African origin of human diversity, interbreeding between modern humans and archaic forms of the genus Homo, and genome diversity in the great apes. His lab and the UAGC were early adopters of next generation sequencing (NGS) technology and the application of whole genome analysis in humans, and his lab has been a key player in the Gibbon and Baboon Genome Projects, as well as a consortium that has analyzed the genomes of over 100 Great Apes (GAPE Project). In the past 3 years, Dr. Hammer's research team has succesfully employed NGS methods to identify molecular lesions causing neurodevelopmental disorders in undiagnosed children. This has led to the publication of articles identifying pathogenic variants associated with early onset epileptic encephalopathies. His lab is also currently pursuing studies to identify modifier genes that alter the expression of major genes and how they contribute to phenotypic heterogeneity in Mendelian disorders.

Jeremiah D Hackett

Associate Department Head, Ecology and Evolutionary Biology
Associate Professor, Ecology and Evolutionary Biology
Associate Professor, Genetics - GIDP
Associate Professor, BIO5 Institute
Primary Department
Contact
(520) 621-7514

Work Summary

Jeremiah Hackett’s research interests are in the areas of genome evolution, the evolution of photosynthesis and the physiology of harmful algae. Part of his research investigates how eukaryotes acquire plastids through endosymbiosis and how this process influences genome evolution through gene transfer. Another main area of research is the ecology and physiology of harmful algae. His lab is using microarrays to determine global gene expression patterns of harmful algae under various growth conditions. These gene expression profiles will be used to determine the factors that lead to harmful algal blooms in the oceans.

Research Interest

Dr. Jeremiah Hackett, Ph.D., is Associate Professor and Department Head of Ecology and Evolutionary Biology. He received his undergraduate degree in Biology from the University of Wisconsin-Milwaukee and a Ph.D. in Genetics, University of Iowa. Dr. Hackett’s research interests are in the areas of genome evolution, evolution of photosynthesis and the physiology of harmful algae. His research investigates how eukaryotes acquire plastids through endosymbiosis and how this process influences genome evolution through gene transfer. Another main area of research is the ecology and physiology of harmful algae. Dr. Hackett uses microarrays to determine global gene expression patterns of harmful algae under various growth conditions. These gene expression profiles will be used to determine the factors that lead to harmful algal blooms in the oceans.

Ryan N Gutenkunst

Associate Department Head, Molecular and Cellular Biology
Associate Professor, Applied BioSciences - GIDP
Associate Professor, Applied Mathematics - GIDP
Associate Professor, Cancer Biology -
Associate Professor, Ecology and Evolutionary Biology
Associate Professor, Genetics - GIDP
Associate Professor, Molecular and Cellular Biology
Associate Professor, Public Health
Associate Professor, Statistics-GIDP
Associate Professor, BIO5 Institute
Member of the Graduate Faculty
Director, Graduate Studies
Primary Department
Contact
(520) 626-0569

Work Summary

We learn history from the genomes of humans, tumors, and other species. Our studies reveal how evolution works at the molecular level, offering fundamental insight into how humans and pathogens adapt to challenges.

Research Interest

The Gutenkunst group studies the function and evolution of the complex molecular networks that comprise life. To do so, they integrate computational population genomics, bioinformatics, and molecular evolution. They focus on developing new computational methods to extract biological insight from genomic data and applying those methods to understand population history and natural selection.

Renee A Duckworth

Associate Professor, Ecology and Evolutionary Biology
Member of the Graduate Faculty
Associate Professor, BIO5 Institute
Primary Department
Contact
(520) 626-0734

Research Interest

Dr. Renee Duckworth, Ph.D. is Associate Professor of Ecology and Evolutionary Biology. The ultimate goal of her work is to understand the link between micro and macroevolutionary processes with specific focus on ecological feedbacks and evolutionary diversification. To achieve these goals, she integrates approaches from evolutionary and physiological ecology to quantitative genetic and genomic methods. Her current work uses large-scale field experiments, empirical measures of lifetime fitness and molecular multi-generational pedigree reconstruction to investigate the dynamics of trait evolution in the context of range expansion and species coexistence in passerine birds. Current projects in the lab include the evolution of adaptive introgression, the mechanisms of species coexistence at range margins, the role of adaptive maternal effects in range expansion, and the origin and evolution of animal personality traits.

Judith X Becerra

Associate Research Scientist, Biosphere 2
Associate Research Professor
Associate Professor, Entomology / Insect Science - GIDP
Associate Research Scientist, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 621-9397

Research Interest

Judith Becerra, PhD, is an evolutionary ecologist interested in insect-plant interactions. Her current research combines ecological, biogeographycal, and chemical information with molecular phylogenetics to identify macroevolutionary patterns of host shifts, co-adaptive forces shaping coevolution and evolutionary strategies of plant chemical defenses. She is also interested in plant and insect diversification and ecological chemical interactions between insects and plants. Extensive research has been pursued in the Mexican tropical dry forests with the plant genus Bursera and their herbivores, the beetle genus Blepharida. These two groups have interacted for the last 100 million years and are both highly diverse, with spectacular adaptations and counteradaptations.