Gene expression

James Galligan

Assistant Professor, Pharmacology and Toxicology
Assistant Professor, Genetics - GIDP
Member of the Graduate Faculty
Assistant Professor, BIO5 Institute
Primary Department
Contact
(520) 621-6015

Research Interest

Cell metabolism is a tightly controlled process that uses numerous feedback and feed-forward mechanisms to provide the necessary requirements to sustain growth. Many of these regulatory mechanisms are mediated through the post-translational modification of enzymes that serve to modulate activity and function. My laboratory studies the link between cell metabolism, protein post-translational modifications, and gene expression. We utilize mass spectrometry to investigate both novel and established metabolic feedback mechanisms and how these go awry in disease. Current work centers on histone modifications derived from cell metabolism and how these modifications are disrupted in diabetes and cancer.

Catharine L Smith

Associate Professor, Pharmacology and Toxicology
Associate Professor, Cancer Biology - GIDP
Associate Professor, Genetics - GIDP
Associate Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-8349

Research Interest

Catharine Smith, PhD, focuses on epigenetic mechanisms of gene expression, particularly their regulation through signaling pathways and their modulation by anti-cancer drugs. Epigenetic mechanisms play a very important role in transcriptional regulation of genes but the specifics of these mechanisms require ongoing study. A very exciting new area of research focuses on how these mechanisms are disrupted during tumorigenesis but may also be harnessed to treat cancer. Signaling pathways control the expression of key genes in non-cancerous cells but are often misregulated during the process of oncogenesis. Chromatin proteins and transcription factors that interact with chromatin are often targets of these pathways. Two projects in the lab are directed at the interface of signaling pathways and chromatin. First, Dr. Smith is interested in the mechanism by which the female reproductive steroid, progesterone, regulates target genes in the physiological context of chromatin. Chronic progestin exposure has been linked to increased incidence of breast cancer in post-menopausal women on hormone-replacement therapy. However, the function of the progesterone receptor in mammary tissue and its role in oncogenesis are not well understood. Current studies in this area are directed at the role of chaperone proteins in determining how the progesterone receptor functions at target genes in chromatin and how it is impacted by other signaling pathways.Second, her lab has discovered a novel cAMP signaling pathway that regulates cell cycle progression and are focused on identifying specific components and targets of this pathway.Third, histone deacetylases (HDACs) are key transcriptional regulatory proteins. Inhibitors that target these enzymes have shown great promise as anti-cancer drugs and are currently in clinical trials. However, a lack of knowledge of HDAC biology has made it difficult to predict which tumors will respond to these drugs. HDACs are known to participate in gene repression, but recent work indicates that they are also transcriptional coactivators. Further studies on the mechanism of gene repression through HDAC inhibitors will provide insight into the role of these enzymes as coactivators.

Jacob C Schwartz

Associate Research Professor, Pharmacology
Assistant Professor, Chemistry and Biochemistry - Med
Assistant Professor, Chemistry and Biochemistry-Sci
Assistant Professor, Neuroscience - GIDP
Associate Professor, Cancer Biology - GIDP
Associate Professor, Neuroscience - GIDP
Assistant Professor, BIO5 Institute
Primary Department
Contact
(520) 621-0877

Research Interest

Every investigation that they have pursued, even investigating novel disease models, has produced profound discoveries in basic biology and biochemistry. They are currently working in collaborations with labs to exploit three system to explore the basic function of the RNA-binding protein FUS. First, they are collaborating with the lab of Rob Batey (UC Boulder) to investigate the role of RGG-rich domains in mediating RNA recognition. Next they are collaborating with lab of Kate Fitzgerald (U Mass Med) to investigate the role of FUS in transcriptional pause release and initiation as macrophage cells respond to stimulation of Toll-like receptor 4. Lastly, they are collaborating with the lab of Ran Taube (Ben-Gurion U) to investigate the role of FUS as a scaffold protein to promote the formation of the Super Elongation Complex (SEC) both genome-wide and for the Tat gene in HIV. They are also pursuing the role of FUS and noncoding RNAs in DNA damage repair. They believe that the function of FUS in affecting transcription is also crucial to the repair of DNA damage in cells.

Casey E Romanoski

Associate Professor, Cellular and Molecular Medicine
Associate Professor, Clinical Translational Sciences
Associate Professor, Genetics - GIDP
Associate Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-7244

Work Summary

My laboratory aims to identify the genetic and environmental reasons that certain individuals are predisposed to develop complex diseases like heart disease. We use new technologies, experimental, and computational approaches to identify molecular patterns indicative of disease predisposition.

Research Interest

Our laboratory is both experimental and computational. We use next-generation sequencing technologies to measure genome-wide molecular phenotypes. By leveraging the interconnected relationships between DNA sequence, transcription factor binding, chromatin modification, and gene expression, we study how cells achieve context-appropriate expression patterns and signal responsiveness. Lab Website: www.romanoskilab.com Keywords: Genetics, Genomics, Vascular Biology, Bioinformatics

David W Galbraith

Professor, Plant Science
Professor, Biomedical Engineering
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 621-9153

Work Summary

I examine the molecular functions of the different cells found in the tissues and organs of plants and animals and how they combine these functions to optimize the health and vigor of the organism.

Research Interest

David Galbraith obtained undergraduate and graduate degrees in Biochemistry from the University of Cambridge, and postdoctoral training as a NATO Fellow at Stanford University. His first academic appointment was at the University of Nebraska Lincoln, and he became Professor of Plant Sciences at the University of Arizona in 1989. His research has focused on the development of instrumentation and methods for the analysis of biological cells, organs, and systems. He is internationally recognized as a pioneer in the development and use of flow cytometry and sorting in plants, developing widely-used methods for the analysis of genome size and cell cycle status, and for the production of somatic hybrids. He also was among the first to develop methods for the analysis of gene expression within specific cell types, using markers based on Fluorescent Protein expression for flow sorting these cells, and microarray platforms for analysis of their transcriptional activities and protein complements. Current interests include applications of highly parallel platforms for transcript and protein profiling of minimal sample sizes, and for analysis of genetic and epigenetic mechanisms that regulate gene expression during normal development and in diseased states, specifically pancreatic cancer. He is also funded to study factors involved in the regulation of bud dormancy in Vitis vinifera, and has interests in biodiversity and improvement of third-world agriculture. He has published more than 180 scholarly research articles, holds several patents, was elected a Fellow of the American Association for Advancement of Science in 2002, and serves on the editorial board of Cytometry Part A. He is widely sought as a speaker, having presented over 360 seminars in academic, industrial and conference settings. He was elected Secretary of the International Society for Advancement of Cytometry in 2016. Keywords: Plant and Animal Cellular Engineering; Biological Instrumentation; Flow Cytometry and Sorting

Ross Buchan

Associate Professor, Molecular and Cellular Biology
Associate Professor, Cancer Biology - GIDP
Associate Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Contact
(520) 626-1881

Work Summary

The Buchan lab studies how cells regulate gene expression at the level of cytoplasmic messenger RNA (mRNA), the templates of protein synthesis. Areas of particular interest include mRNA-protein bodies called stress granules and P-bodies, which regulate mRNA function, cell signaling, and are implicated in the pathology of viral replication, various cancers and neurodegenerative diseases such as ALS.

Research Interest

The control of gene expression is critical to nearly all aspects of cellular biology, from maintaining basic cell function and identity, to the ability of cells to respond to numerous signals that arise during processes such as development, exposure to pathogens or changes in the cellular environment. A key means by which all cells enact appropriate gene expression responses is to alter the function of messenger RNAs (mRNAs). mRNAs exist in different functional states, dependent upon the proteins bound to them. These states include translation (protein synthesis), repression (off state) and decay. The localization of an mRNAs can also affect its function, thus cells are offered an array of spatial and temporal mechanisms for gene expression control at the mRNA level. mRNAs can also cycle between these different functional states. For example, mRNAs exiting translation often accumulate in distinct mRNA-protein (mRNP) assemblies known as P-bodies and stress granules, from which they may ultimately return to translation again or possibly undergo mRNA decay. Dr Buchan (Ph.D, B.S.) and his lab are particularly interested in the study of P-bodies and stress granules. These conserved, mRNA-protein (mRNP) bodies contain important protein regulators of mRNA decay and translation, as well as signaling proteins, and thus affect gene expression control and cell signaling pathways. In addition, they strongly resemble other important mRNP granules that function in embryogenesis (maternal granules) and memory formation (neuronal transport granules). Finally, stress granules and P-bodies have numerous connections to disease, such as an involvement in RNA viral replication, elevated levels in certain cancer types, as well as the formation of aberrant stress granules in neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS). The Buchan lab uses yeast and cell line models to study the assembly, disassembly and function of stress granules and P-bodies, and how aspects of stress granule and P-bodies contribute to ALS and forms of cancer

Parker B Antin

Associate Dean, Research-Agriculture and Life Sciences
Associate Vice President for Research, Agriculture - Life and Veterinary Sciences / Cooperative Extension
Professor, Cellular and Molecular Medicine
Professor, Molecular and Cellular Biology
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 621-5242

Research Interest

Parker Antin is Professor of Cellular and Molecular Medicine in the College of Medicine, Associate Vice President for Research for the Division of Agriculture, Life and Veterinary Medicine, and Cooperative Extension, and Associate Dean for Research in the College of Agriculture and Life Sciences. In his positions of Associate Vice President and Associate Dean, he is responsible for developing and implementing the research vision for the Colleges of Agriculture and Life Sciences and the College of Veterinary Medicine, with total research expenditures of approximately $65M per year. His responsibilities include oversight of research strategy and portfolio investment, grants and contracts pre award services, research intensive faculty hires and retentions, research communication and marketing, research facilities, and research compliance services. In collaboration with Division and College leadership teams, he has shared responsibilities for philanthropy, budgets and information technology. Dr. Antin is a vertebrate developmental biologist whose research is concerned with the molecular mechanisms of embryonic development. His research has been supported by NIH, NSF, NASA, USDA, and the DOE, as well as several private foundations including the American Heart Association and the Muscular Dystrophy Association, He is the Principal Investigator of CyVerse, a $115M NSF funded cyberinfrastructure project whose mission is to design, deploy and expand a national cyberinfrastructure for life sciences research, and train scientists in its use (http://cyverse.org). With 65,000 users worldwide, CyVerse enables scientists to manage and store data and experiments, access high-performance computing, and share data and results with colleagues and the public. Dr. Antin is also active nationally in the areas of science policy and funding for science. He is a past President of the Federation of Societies for Experimental Biology (FASEB), an umbrella science policy and advocacy organization representing 32 scientific societies and 135,000 scientists. His continued work with FASEB, along with his duties as Associate Vice President and Associate Dean for Research, and CyVerse PI, brings him frequently to Washington, DC, where he advocates for support of science and science policy positions that enhance the scientific enterprise.