Genetic mapping

Rod A Wing

Director, Plant Genomics Institute
Bud Antle Endowed Chair For Excellence, Agriculture-Life Sciences
Professor, Plant Science
Professor, Ecology and Evolutionary Biology
Regents Professor
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-9595

Work Summary

Harnessing 15MY of natural variation in the genus Oryza (rice) to help solve the 10-billion people question: i.e. how do we feed our world without destroying our world.

Research Interest

Rod Wing, PhD, and his lab, The Arizona Genomics Institute, specialize in building what geneticists call a physical map of a genome- a crucial foundation of any genome sequencing effort. AGI has earned a reputation for providing extremely high-quality maps, as documented in previous sequencing efforts leading to the genome sequences of rice and corn. The genome sequence will allow scientists to locate and identify genes that can improve and strengthen crops and increase yield in order to help solve the Earth’s looming food crisis by creating new strains of the cereal crops that make up 60% of humankind’s diet. Keywords: Genome Biology, Genome Sequencing/Assembly/Annotation, Food Security, Rice

Carol A Soderlund

Research Associate Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-9600

Research Interest

Carol Soderlund, PhD, is an Associate Research Professor at the BIO5 Institute at the University of Arizona. While working on her PhD in Computer science in 1988, she collaborated with a biologist to develop one of the first gene prediction programs. She received a DOE Human Genome Distinguished Postdoctoral Fellowship hosted by Los Alamos National Laboratory, where she became involved with mapping the human genome. Her work continued at the Sanger Centre in the UK, which was on the forefront of sequencing the human genome. She developed the FPC software, which was used for mapping the human genome, and has since been the primary software package for mapping large genomes.Her primary research objective is to provide environments for biologists to run algorithms (both her own and existing software), with highly interactive graphics for query and display of the data and results. Towards this end, she has published seven software packages for various genomic problems, where the three most important are: (1) The FPC program mentioned above, which is still being used after its initial release 15 years ago and has been extended for next generation sequencing. (2) The SyMAP software for the computation, query and display for synteny for the comparison of plant genomes. (3) The Transcriptome Computational Workbench (TCW) for the analysis of the transcriptome across tissues or conditions, and across the species for finding shared and unique genes.Dr. Soderlund has published over 60 original research papers and 20 book chapters on a range of genomic problems. She has collaborated with a range of scientists on a variety of organisms and genomic problems, where the majority of the collaborations have been on mapping genomes and transcriptome analysis, but she has also been involved in metagenomics, sequencing, and host-pathogen interactions.

Michael F Hammer

Associate Director, Omics
Research Scientist, Arizona Research Labs
Research Scientist, Ecology and Evolutionary Biology
Research Scientist, Neurology
Research Scientist, BIO5 Institute
Contact
(520) 621-9828

Work Summary

Michael Hammer has headed a productive research lab in human evolutionary genetics. His lab were early adopters of next generation sequencing (NGS) technology successfully employed NGS methods to identify molecular lesions causing neurodevelopmental disorders in undiagnosed children. His lab is also currently pursuing studies to identify modifier genes that alter the expression of major genes and how they contribute to phenotypic heterogeneity in Mendelian disorders.

Research Interest

Michael Hammer is a Research Scientist in the Division of Biotechnology at the University of Arizona with appointments in the Department of Neurology, Ecology and Evolutionary Biology, Bio5, the School of Anthropology, the University of Arizona Cancer Center, and the Steele Children's Research Center. Currently Dr. Hammer is interested in the use of the latest DNA sequencing technology to infer the underlying genetic architecture of neurodevelopmental diseases. Since 1991 Dr. Hammer has directed of the University of Arizona Genetics Core (UAGC), a facility that provides training and molecular biology services to University and biotechnology communities at large. After receiving his Ph.D. in Genetics at the University of California at Berkeley in 1984, he performed post-doctoral research at Princeton and Harvard. Over the past two decades, Dr. Hammer has headed a productive research lab in human evolutionary genetics, resulting in over 100 published articles documenting the African origin of human diversity, interbreeding between modern humans and archaic forms of the genus Homo, and genome diversity in the great apes. His lab and the UAGC were early adopters of next generation sequencing (NGS) technology and the application of whole genome analysis in humans, and his lab has been a key player in the Gibbon and Baboon Genome Projects, as well as a consortium that has analyzed the genomes of over 100 Great Apes (GAPE Project). In the past 3 years, Dr. Hammer's research team has succesfully employed NGS methods to identify molecular lesions causing neurodevelopmental disorders in undiagnosed children. This has led to the publication of articles identifying pathogenic variants associated with early onset epileptic encephalopathies. His lab is also currently pursuing studies to identify modifier genes that alter the expression of major genes and how they contribute to phenotypic heterogeneity in Mendelian disorders.

Bernard W Futscher

Assistant Research Scientist, Cancer Center Division
Associate Professor, BIO5 Institute
Investigator, Center for Toxicology
Professor, Pharmacology and Toxicology
Professor, Cancer Biology - GIDP
Primary Department
Department Affiliations
Contact
(520) 626-4646

Work Summary

Bernard Futscher's lab is studying the molecular origins of human cancer. Understanding epigenetic dysfunction in human cancer has been Dr. Futscher's primary research focus since establishing his own independent laboratory. This epigenetic research has moved into the area of noncoding RNAs and their potential role in cancer cell immortality.

Research Interest

Bernard Futscher, PhD, and his lab focus on the molecular origins of human cancer. More specifically, the lab group has 3 inter-related research objectives based on the underlying concept that developing an in-depth understanding of epigenetic mechanismsresponsible for governing cell fate will allow for the development of more effective strategies for the prevention, treatment, and cure of cancer. First, they wish to identify which epigenetic mechanisms participate in the transcriptional control of genes important to growth and differentiation. Second, they seek to determine how these epigenetic mechanisms, and therefore epigenetic homeostasis, become compromised during oncogenesis. Third, using a new and more complete understanding of epigenetic control of the genome, Dr. Futscher and his team are developing rational new therapeutic strategies that seek to repair these defects in the cancer cell and transcriptionally reprogram the malignant cancer cell to a benign state. To reach their objectives, a variety of in vitro models of cancer have been developed to address emerging hypotheses that are inferred from the literature in basic and clinical science as well as our own data. Results from these in vitro studies are then translated to the clinical situation to determine their meaning in the actual clinical face of the disease. Similarly, they attempt to take information obtained from the genome-wide assessment of clinical specimens in order to help guide our thinking and develop new hypotheses that can be tested experimentally in our in vitro models.