Magnetic resonance imaging

Elizabeth B Hutchinson

Assistant Professor, Biomedical Engineering
Member of the Graduate Faculty
Assistant Professor, BIO5 Institute
Primary Department
Department Affiliations

Research Interest

Elizabeth Hutchinson, PhD joined the University of Arizona department of biomedical engineering in 2019 as an assistant professor in the focus area of biomedical imaging. Her educational background and research interests span both imaging science and neuroscience with the goal of using advanced imaging approaches to develop and understand novel imaging markers of brain changes in neurologic disorders – particularly in traumatic brain injury (TBI). Her research combines human-similar pre-clinical models with cutting edge MRI methodology in order to advance translational neuroimaging tools for the understanding, diagnosis and treatment of brain disorders.

Theodore P Trouard

Professor, Biomedical Engineering
Professor Emeritus
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-2177

Research Interest

Dr. Trouard is an Associate Professor of Biomedical Engineering and Medical Imaging and a member of the Evelyn F. McKnight Brain Institute. His research involves the development and application of novel magnetic resonance imaging (MRI) techniques to understand human health and effectively treat disease. Dr. Trouard’s multidisciplinary work spans a range from basic studies of cell culture systems, to studies of preclinical animal models of disease, to clinical imaging in humans. Many aspects of this work are directed towards understanding and treatment of neurological disorders including Alzheimer's Disease, Niemann Pick Type C disease, Stroke and Cancer.

Dianne K Patterson

Staff Scientist, Neuroimaging
Contact
(520) 621-1644

Work Summary

I analyze MRI images to understand more about how human language works. We use functional MRI to determine which brain regions are involved in different language tasks. We also look at diffusion MRI to learn about the quality of the wiring between regions.

Research Interest

I do neuroimaging, specifically fMRI and DTI. I am especially interested in brain networks and developments in neuroimaging software. We use independent component analysis to identify separate networks in the brain related to processing and learning language. My colleagues and I worked to improve fMRI analysis, display and data sharing options. Beginning with a web-based workbench designed for the dynamic exploration of map-based data, we worked to develop brain maps that could be similarly explored and demonstrated that this approach yielded results similar to those achieved by much more laborious and manual exploration techniques. This has improved our ability to streamline analyses, extract insights from our data and share data online. I have also worked on DWI analysis of the language system for the past 8 years. This has resulted in contributions to tract analyses (Wilson et al., 2011) and to the development of a novel technique (Patterson et al., 2015) to extract not only information about the properties of each tract but also information about the size and location of connected grey matter regions. We continue to explore the implications of these new measures. Keywords: fMRI, DWI, Language, Neuroimaging, MRI

Aneta Kielar

Assistant Professor, Speech/Language and Hearing
Assistant Professor, Cognitive Science - GIDP
Assistant Professor, BIO5 Institute
Contact
(520) 621-1644

Work Summary

My research examines neural factors which affect language functions, and how these change across life-span and are influenced by stroke, brain injury and neurodegenerative disorders. In my work, I use combination of cognitive measures and multimodal neuroimaging techniques (fMRI, EEG/ERPs, MEG). I am also interested in recovery of function, and treatment approaches involving speech-language therapy in combination with noninvasive brain stimulation techniques.

Research Interest

My research program is centered on investigating the neurobiology of healthy language system, and changes in cognitive and language processing associated with stroke and neurological disorders. My interests include incorporating cognitive measures and multimodal neuroimaging methods, with a goal to understand the relationship between language and other aspects of cognition, as well as the neural dynamics related to brain damage, resilience, and recovery. My research efforts are directed towards identifying factors which affect language comprehension and production, and how these change with development and are influenced by aging, stroke, brain injury, and neurodegenerative disorders, including Primary Progressive Aphasia (PPA) and Alzheimer’s disease (AD). I study language processing at the multiple levels, using behavioral experiments and both structural (DTI, lesion-symptom mapping, voxel-based morphometry) and functional neuroimaging (fMRI, EEG, MEG). In addition, I am interested in neuroplasticity and application of noninvasive brain stimulation techniques (e.g., TMS, tDCS) to the treatment of aphasia and dementia. The long-term goal of my research is to understand the cognitive and neural processes that support recovery of cognitive and language functions after stroke. Keywords: stroke, aphasia, dementia, MRI, EEG, Language

Nan-kuei Chen

Associate Professor, Biomedical Engineering
Associate Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-0060

Research Interest

I am an MR physicist with extensive expertise in fast image acquisition methodology, pulse sequence design, and artifact correction for neuro MRI. In the past 18 years, I have developed novel approaches effectively addressing various types of challenging MRI artifacts, ranging from echo-planar imaging (EPI) geometric distortions, to susceptibility effect induced signal loss, to EPI Nyquist artifact, to motion-induced phase errors and aliasing artifacts in interleaved EPI based diffusion-weighted imaging. I am the original developer of multiplexed sensitivity encoded (MUSE) MRI, which can measure human brain connectivity in vivo at high spatial-resolution and accuracy, as shown in the publications listed below. More generally, my research involves the application of MR protocols in translational contexts. I have served as PI on NIH-funded R01, R21 and R03 grants, and have had extensive experience as a co-investigator on NIH-funded projects. The current focus of my research includes: * Development of high-throughput and motion-immune clinical MRI for imaging challenging patient populations * Imaging of neuronal connectivity networks for studies of neurological diseases * High-fidelity and multi-contrast MRI guided intervention * Characterization and correction of MRI artifacts * Signal processing and algorithm development * MRI studies of human development

John JB Allen

Professor, Psychology
Distinguished Professor
Professor, BIO5 Institute
Member of the General Faculty
Professor, Neuroscience - GIDP
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 621-7448

Work Summary

Depression is a major health problem that is often chronic or recurrent. Existing treatments have limited effectiveness, and are provided wihtout a clear indication that they will match a particular patient's needs. In this era of precision medicine, we strive to develop neurally-informed treatments for depression and related disorders.

Research Interest

Dr. Allen’s research spans several areas, but the main focus is the etiology and treatment of mood and anxiety disorders. His work focuses on identifying risk factors for depression using electroencephalographic and autonomic psychophysiological measures, especially EEG asymmetry, resting state fMRI connectivity, and cardiac vagal control. Based on these findings, he is developing novel and neurally-informed treatments for mood and anxiety disorders, including Transcranial Ultrasound, EEG biofeedback, and Transcranial Direct Current and Transcranial Alternating Current stimulation. Other work includes understanding how emotion and emotional disorders influence the way we make decisions and monitor our actions. Keywords: Depression, Neuromodulation, EEG, Resting-state fMRI