Cynthia Miranti

Cynthia Miranti

Professor, Cellular and Molecular Medicine
Chair, Cancer Biology - GIDP
Co-Program Leader, Cancer Biology Research Program
Member of the Graduate Faculty
Professor, BIO5 Institute
Primary Department
Contact
(520) 626-2269

Research Interest

Research Interests Our objective is to define how integrin interactions within the tumor microenvironment impact prostate cancer development, hormonal resistance, and metastasis. Our approach is to understand the normal biology of the prostate gland and its microenvironment, as well as the bone environment, to inform on the mechanisms by which tumor cells remodel and use that environment to develop, acquire hormonal resistance, and metastasize. Our research is focused in three primary areas: 1) developing in vitro and in vivo models that recapitulate human disease based on clinical pathology, 2) identifying signal transduction pathway components that could serve as both clinical markers and therapeutic targets, and 3) defining the genetic/epigenetic programming involved in prostate cancer development.

Publications

Goren, M. B., Swendsen, C. L., Fiscus, J., & Miranti, C. (1984). Fluorescent markers for studying phagosome-lysosome fusion. Journal of leukocyte biology, 36(3), 273-92.

Lysosomotropic fluorescent aminoacridines such as acridine orange and quinacrine have achieved prominence as markers for studying lysosome-phagosomes fusion, especially in macrophages. Experiments described demonstrate that because the aminoacridines traverse biological membranes with facility, they diffuse throughout the system, and ultimately accumulate intra- or extracellularly where they are most efficiently bound. Their presence or absence in phagosomes is therefore not unequivocally indicative of fusion or nonfusion. Alternative fluorescent lysosomal markers are described, and systems defined for which the aminoacridines may probably be used with confidence.

Zarif, J. C., Lamb, L. E., Schulz, V. V., Nollet, E. A., & Miranti, C. K. (2015). Androgen receptor non-nuclear regulation of prostate cancer cell invasion mediated by Src and matriptase. Oncotarget, 6(9), 6862-76.

Castration-resistant prostate cancers still depend on nuclear androgen receptor (AR) function despite their lack of dependence on exogenous androgen. Second generation anti-androgen therapies are more efficient at blocking nuclear AR; however resistant tumors still develop. Recent studies indicate Src is highly active in these resistant tumors. By manipulating AR activity in several different prostate cancer cell lines through RNAi, drug treatment, and the use of a nuclear-deficient AR mutant, we demonstrate that androgen acting on cytoplasmic AR rapidly stimulates Src tyrosine kinase via a non-genomic mechanism. Cytoplasmic AR, acting through Src enhances laminin integrin-dependent invasion. Active Matriptase, which cleaves laminin, is elevated within minutes after androgen stimulation, and is subsequently shed into the medium. Matriptase activation and shedding induced by cytoplasmic AR is dependent on Src. Concomitantly, CDCP1/gp140, a Matriptase and Src substrate that controls integrin-based migration, is activated. However, only inhibition of Matriptase, but not CDCP1, suppresses the AR/Src-dependent increase in invasion. Matriptase, present in conditioned medium from AR-stimulated cells, is sufficient to enhance invasion in the absence of androgen. Thus, invasion is stimulated by a rapid but sustained increase in Src activity, mediated non-genomically by cytoplasmic AR, leading to rapid activation and shedding of the laminin protease Matriptase.

Putnam, A. J., Schulz, V. V., Freiter, E. M., Bill, H. M., & Miranti, C. K. (2009). Src, PKCalpha, and PKCdelta are required for alphavbeta3 integrin-mediated metastatic melanoma invasion. Cell communication and signaling : CCS, 7, 10.

Integrins, cell-surface receptors that mediate adhesive interactions between cells and the extracellular matrix (ECM), play an important role in cancer progression. Expression of the vitronectin receptor alphavbeta3 integrin correlates with increased invasive and metastatic capacity of malignant melanomas, yet it remains unclear how expression of this integrin triggers melanoma invasion and metastasis.

Zarif, J. C., & Miranti, C. K. (2016). The importance of non-nuclear AR signaling in prostate cancer progression and therapeutic resistance. Cellular signalling, 28(5), 348-56.

The androgen receptor (AR) remains the major oncogenic driver of prostate cancer, as evidenced by the efficacy of androgen deprivation therapy (ADT) in naïve patients, and the continued effectiveness of second generation ADTs in castration resistant disease. However, current ADTs are limited to interfering with AR ligand binding, either through suppression of androgen production or the use of competitive antagonists. Recent studies demonstrate 1) the expression of constitutively active AR splice variants that no longer depend on androgen, and 2) the ability of AR to signal in the cytoplasm independently of its transcriptional activity (non-genomic); thus highlighting the need to consider other ways to target AR. Herein, we review canonical AR signaling, but focus on AR non-genomic signaling, some of its downstream targets and how these effectors contribute to prostate cancer cell behavior. The goals of this review are to 1) re-highlight the continued importance of AR in prostate cancer as the primary driver, 2) discuss the limitations in continuing to use ligand binding as the sole targeting mechanism, 3) discuss the implications of AR non-genomic signaling in cancer progression and therapeutic resistance, and 4) address the need to consider non-genomic AR signaling mechanisms and pathways as a viable targeting strategy in combination with current therapies.

Miranti, C. K., Ohno, S., & Brugge, J. S. (1999). Protein kinase C regulates integrin-induced activation of the extracellular regulated kinase pathway upstream of Shc. The Journal of biological chemistry, 274(15), 10571-81.

Adhesion of fibroblasts to extracellular matrices via integrin receptors is accompanied by extensive cytoskeletal rearrangements and intracellular signaling events. The protein kinase C (PKC) family of serine/threonine kinases has been implicated in several integrin-mediated events including focal adhesion formation, cell spreading, cell migration, and cytoskeletal rearrangements. However, the mechanism by which PKC regulates integrin function is not known. To characterize the role of PKC family kinases in mediating integrin-induced signaling, we monitored the effects of PKC inhibition on fibronectin-induced signaling events in Cos7 cells using pharmacological and genetic approaches. We found that inhibition of classical and novel isoforms of PKC by down-regulation with 12-0-tetradeconoyl-phorbol-13-acetate or overexpression of dominant-negative mutants of PKC significantly reduced extracellular regulated kinase 2 (Erk2) activation by fibronectin receptors in Cos7 cells. Furthermore, overexpression of constitutively active PKCalpha, PKCdelta, or PKCepsilon was sufficient to rescue 12-0-tetradeconoyl-phorbol-13-acetate-mediated down-regulation of Erk2 activation, and all three of these PKC isoforms were activated following adhesion. PKC was required for maximal activation of mitogen-activated kinase kinase 1, Raf-1, and Ras, tyrosine phosphorylation of Shc, and Shc association with Grb2. PKC inhibition does not appear to have a generalized effect on integrin signaling, because it does not block integrin-induced focal adhesion kinase or paxillin tyrosine phosphorylation. These results indicate that PKC activity enhances Erk2 activation in response to fibronectin by stimulating the Erk/mitogen-activated protein kinase pathway at an early step upstream of Shc.