Jennifer Kehlet Barton

Jennifer Kehlet Barton

Director, BIO5 Institute
Thomas R. Brown Distinguished Chair in Biomedical Engineering
Professor, Agricultural-Biosystems Engineering
Professor, Biomedical Engineering
Professor, Electrical and Computer Engineering
Professor, Medical Imaging
Professor, Optical Sciences
Professor, Cancer Biology - GIDP
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 626-0314

Work Summary

I develop new optical imaging devices that can detect cancer at the earliest stage. Optics has the resolution and sensitivity to find these small, curable lesions, and we design the endoscope that provide access to organs inside the body. .

Research Interest

Jennifer Barton, Ph.D. is known for her development of miniature endoscopes that combine multiple optical imaging techniques, particularly optical coherence tomography and fluorescence spectroscopy. She evaluates the suitability of these endoscopic techniques for detecting early cancer development in patients and pre-clinical models. She has a particular interest in the early detection of ovarian cancer, the most deadly gynecological malignancy. Additionally, her research into light-tissue interaction and dynamic optical properties of blood laid the groundwork for a novel therapeutic laser to treat disorders of the skin’s blood vessels. She has published over 100 peer-reviewed journal papers in these research areas. She is currently Professor of Biomedical Engineering, Electrical and Computer Engineering, Optical Sciences, Agriculture-Biosystems Engineering, and Medical Imaging at the University of Arizona. She has served as department head of Biomedical Engineering, Associate Vice President for Research, and is currently Director of the BIO5 Institute, a collaborative research institute dedicated to solving complex biology-based problems affecting humanity. She is a fellow of SPIE – the International Optics Society, and a fellow of the American Institute for Medical and Biological Engineering. Keywords: bioimaging, biomedical optics, biomedical engineering, bioengineering, cancer, endoscopes

Publications

Davidson, B. R., & Barton, J. K. (2009). Automated contact lens measurement using optical coherence tomography. ADVANCED BIOMEDICAL AND CLINICAL DIAGNOSTIC SYSTEMS VII, 7169.
Howlett, I. D., Han, W., Gordon, M., Rice, P., Barton, J. K., & Kostuk, R. K. (2017). Volume holographic imaging endoscopic design and construction techniques. Journal of biomedical optics, 22(5), 56010.

A reflectance volume holographic imaging (VHI) endoscope has been designed for simultaneous in vivo imaging of surface and subsurface tissue structures. Prior utilization of VHI systems has been limited to ex vivo tissue imaging. The VHI system presented in this work is designed for laparoscopic use. It consists of a probe section that relays light from the tissue sample to a handheld unit that contains the VHI microscope. The probe section is constructed from gradient index (GRIN) lenses that form a 1:1 relay for image collection. The probe has an outer diameter of 3.8 mm and is capable of achieving 228.1 ?? lp / mm resolution with 660-nm Kohler illumination. The handheld optical section operates with a magnification of 13.9 and a field of view of 390 ?? ? m × 244 ?? ? m . System performance is assessed through imaging of 1951 USAF resolution targets and soft tissue samples. The system has also passed sterilization procedures required for surgical use and has been used in two laparoscopic surgical procedures.

Watson, J. M., Marion, S. L., Rice, P. F., Bentley, D. L., Besselsen, D. G., Utzinger, U., Hoyer, P. B., & Barton, J. K. (2014). In vivo time-serial multi-modality optical imaging in a mouse model of ovarian tumorigenesis. Cancer Biology and Therapy, 15(1), 42-60.
BIO5 Collaborators
Jennifer Kehlet Barton, David G Besselsen

Abstract:

Identification of the early microscopic changes associated with ovarian cancer may lead to development of a diagnostic test for high-risk women. In this study we use optical coherence tomography (OCT) and multiphoton microscopy (MPM) (collecting both two photon excited fluorescence [TPEF] and second harmonic generation [SH G]) to image mouse ovaries in vivo at multiple time points. We demonstrate the feasibility of imaging mouse ovaries in vivo during a longterm survival study and identify microscopic changes associated with early tumor development. These changes include alterations in tissue microstructure, as seen by OCT, alterations in cellular fluorescence and morphology, as seen by TPEF, and remodeling of collagen structure, as seen by SH G. These results suggest that a combined OCT-MPM system may be useful for early detection of ovarian cancer. © 2014 Landes Bioscience.

Hariri, L. P., Qiu, Z., Tumlinson, A. R., Besselsen, D. G., Gerner, E. W., Ignatenko, N., Povazay, B., Hermann, B., Sattmann, H., McNally, J., Angelika, U., Drexler, W., & Barton, J. K. (2007). Serial endoscopy in azoxymethane treated mice using ultra-high resolution optical coherence tomography - art. no. 643208. Endoscopic Microscopy II, 6432, 43208-43208.
Howlett, I. D., Gordon, M., Brownlee, J. W., Barton, J. K., & Kostuk, R. K. (2014). Volume Holographic Reflection Endoscope for In-Vivo Ovarian Cancer Clinical Studies. Proceedings of SPIE--the International Society for Optical Engineering, 2014.

We present the design for an endoscopic system capable of imaging tissues of the ovary at two selected imaging depths simultaneously. The method utilizes a multiplexed volume hologram to select wavefronts from different depths within the tissue. It is the first demonstration of an endoscopic volume holographic imaging system. The endoscope uses both gradient index (GRIN) optical components and off the shelf singlet lenses to relay an image from the distal tip to the proximal end. The endoscope has a minimum diameter of 3.75 mm. The system length is 30 cm which is connected to a handle that includes the holographic components and optics that relay the image to a camera. Preliminary evaluation of the endoscope was performed with tissue phantoms and calibrated targets, which shows lateral resolution ≈ 4 μm at an operating wavelength of 660 nm. The hologram is recorded in phenanthraquinone doped poly methacrylate and is designed to produce images from two tissue depths. One image is obtained at the tissue surface and the second 70 μm below the surface. This method requires no mechanical scanning and acquires an image at the camera frame rate. The preliminary ex-vivo results show good correlation with histology sections of the same tissue sections.