Judith Bronstein

Judith Bronstein

Professor, Ecology and Evolutionary Biology
Professor, Entomology / Insect Science - GIDP
University Distinguished Professor
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Contact
(520) 621-3534

Research Interest

Judith L. Bronstein is University Distinguished Professor of Ecology and Evolutionary Biology, with a joint appointment in the Department of Entomology. Dr. Bronstein’s large, active lab focuses on the ecology and evolution of interspecific interactions, particularly on the poorly-understood, mutually beneficial ones (mutualisms). Using a combination of field observations, experiments, and theory, they are examining how population processes, abiotic conditions, and the community context determine net effects of interactions for the fitness of each participant species. Specific conceptual areas of interest include: (i) conflicts of interest between mutualists and their consequences for the maintenance of beneficial outcomes; (ii) the causes and consequences of "cheating" within mutualism; (iii) context-dependent outcomes in both mutualisms and antagonisms; and (iv) anthropogenic threats to mutualisms. In addition, she is Editor-in-Chief of The American Naturalist, a leading international journal in ecology and evolution. An award-winning instructor, Dr. Bronstein teaches at both the undergraduate and graduate levels; she has also run a large training grant administered by BIO5 that places life sciences graduate students in public school classrooms around Tucson. She serves in leadership positions in the College of Science (including chairing the College of Science Promotion and Tenure Committee for 2013), at the University, and at the Arizona-Sonora Desert Museum, where she is a member of the Board of Trustees and Chair of the Science and Conservation Council.

Publications

Hossaert-Mckey, M., & Bronstein, J. L. (2001). Self-pollination and its costs in a monoecious fig (Ficus aurea, Moraceae) in a highly seasonal subtropical environment. American Journal of Botany, 88(4), 685-692.

PMID: 11302855;Abstract:

The unusual floral phenology of most monoecious figs, related to their highly specialized pollination mutualism with agaonid wasps, combines pronounced dichogamy at the level of inflorescences and individuals with population-level asynchrony in flowering. This floral phenology ensures that outcrossing strongly predominates. Fig populations may thus be expected to possess deleterious recessive alleles that lead to inbreeding depression when selfing does occur. However, whether monoecious figs are self-compatible and whether selfing results in inbreeding depression have never been investigated. Using wasps as "pollination tools" and exploiting infrequent overlap in male and female phases on the same tree, we conducted controlled selfed and outcrossed pollination experiments in Ficus aurea. Our results show that this species is totally self-compatible. No negative effects of selfing could be demonstrated on syconium retention, number of vacant ovaries, seed set, or seed germination. However, wasp production had a tendency to be higher after self-pollination. While it is possible that inbreeding depression is expressed at later developmental stages, its absence at the early stages we examined is nonetheless surprising for a plant expected to be highly outcrossed. It is likely that selection pressures other than avoidance of inbreeding are responsible for the evolution and maintenance of the unusual floral phenology of figs.

Brodie, J., Aslan, C., Rogers, H., Redford, K., Maron, J., Bronstein, J., & Groves, C. (2014). Secondary extinctions of biodiversity. Trends in Ecology and Evolution, 29, 664-672.
Bronstein, J., Rafferty, N., CaraDonna, P., Burkle, L., & Iler, A. (2013). Phenological overlap of interacting species in a changing climate: an assessment of available approaches. Ecology and Evolution. doi:10.1002/ece3.668
Rathet, I., & Bronstein, J. L. (1987). Dead acacia thorns: an undescribed arthropod habitat.. American Midland Naturalist, 118(1), 205-210.

Abstract:

Some 25% of the hollow thorns of Acacia collinsii and 29% of those of A. cornigera at Palo Verde National Park, Guanacaste Province, Costa Rica were inhabited by arthropods. The fauna is composed of arthropods from 3 classes and 11 orders with ants, thrips, centipedes and larvae of various insect taxa most common. Overall, arthropods exhibited no trend towards use of thorns of a particular size or height on the plant, but Pseudomyrmex ants were found in larger than average A. cornigera thorns and centipedes in higher than average A. collinsii thorns. Several taxa occurred wholly or predominantly on one of the Acacia species. Hollow thorns appear to be an overabundant resource commonly available to arthropods once resident ants have deserted the dead or dying plant.-from Authors

Bronstein, J., Lanan, M. C., Dornhaus, A., Jones, E. I., Waser, A., & Bronstein, J. -. (2012). The trail less traveled: individual decision-making and its effect on group behavior. PloS one, 7(10).
BIO5 Collaborators
Judith Bronstein, Anna R Dornhaus

Social insect colonies are complex systems in which the interactions of many individuals lead to colony-level collective behaviors such as foraging. However, the emergent properties of collective behaviors may not necessarily be adaptive. Here, we examine symmetry breaking, an emergent pattern exhibited by some social insects that can lead colonies to focus their foraging effort on only one of several available food patches. Symmetry breaking has been reported to occur in several ant species. However, it is not clear whether it arises as an unavoidable epiphenomenon of pheromone recruitment, or whether it is an adaptive behavior that can be controlled through modification of the individual behavior of workers. In this paper, we used a simulation model to test how symmetry breaking is affected by the degree of non-linearity of recruitment, the specific mechanism used by individuals to choose between patches, patch size, and forager number. The model shows that foraging intensity on different trails becomes increasingly asymmetric as the recruitment response of individuals varies from linear to highly non-linear, supporting the predictions of previous work. Surprisingly, we also found that the direction of the relationship between forager number (i.e., colony size) and asymmetry varied depending on the specific details of the decision rule used by individuals. Limiting the size of the resource produced a damping effect on asymmetry, but only at high forager numbers. Variation in the rule used by individual ants to choose trails is a likely mechanism that could cause variation among the foraging behaviors of species, and is a behavior upon which selection could act.