Lalitha Madhavan

Lalitha Madhavan

Associate Professor, Neurology
Associate Professor, Medicine
Associate Professor, Neuroscience - GIDP
Associate Professor, Molecular and Cellular Biology
Associate Professor, Evelyn F Mcknight Brain Institute
Associate Professor, Clinical Translational Sciences
Associate Professor, Physiological Sciences - GIDP
Associate Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-2330

Research Interest

Dr. Madhavan M.D., PhD, is an Assistant Professor of Neurology at the University of Arizona. She is also a member of the Arizona Cancer Center and the Evelyn F. McKnight Brain Institute, and is affiliated with the Neuroscience, Physiology and Molecular, Cellular Biology graduate programs at UA. Dr. Madhavan’s research centers on stem cells and neurological diseases. The ultimate goal of the work is to devise brain repair strategies for neural disorder using stem cells, and other alternate approaches. Currently, her lab is focused on Parkinson’s Disease, and is engaged in three main endeavors: (1) Understanding the therapeutic potential of stem cells in the context of aging, (2) Creating patient-specific induced pluripotent stem cells to study the etiology of Parkinson’s Disease, and (3) Testing the therapeutic feasibility of various types of adult stem cells in preclinical Parkinson’s Disease models. These projects are united by a common goal, which is to investigate core problems hindering the development of effective stem cell-based therapies for Parkinson’s Disease. In addition, the work represents a novel path of research for not only Parkinson’s Disease therapy, but has broad implications for developing treatments for several other age-related neurodegenerative disorders. Visit the Madhavan Lab website to learn more.

Publications

Paumier, K. L., Sortwell, C. E., Madhavan, L., Terpstra, B., Celano, S. L., Green, J. J., Imus, N. M., Marckini, N., Daley, B., Steece-Collier, K., & Collier, T. J. (2015). Chronic amitriptyline treatment attenuates nigrostriatal degeneration and significantly alters trophic support in a rat model of parkinsonism. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 40(4), 874-83.

In addition to alleviating depression, long-term adaptive changes induced by antidepressants may regulate neural plasticity in the diseased brain, providing symptomatic and disease-modifying effects in Parkinson's disease. The present study investigated whether chronic treatment with a frequently prescribed tricyclic antidepressant was neuroprotective in a 6-hydroxydopamine (6-OHDA) rat model of parkinsonism. In lesioned animals, chronic amitriptyline (AMI; 5 mg/kg) treatment resulted in a significant sparing of tyrosine hydroxylase-immunoreactive (THir) neurons in the substantia nigra pars compacta (SNpc) compared with saline treatment. Additionally, striatal fibers were preserved and functional motor deficits were attenuated. Although 6-OHDA lesions did not induce anhedonia in our model, the dose of AMI utilized had antidepressant activity as demonstrated by reduced immobility. Recent in vitro and in vivo data provide evidence that trophic factors such as brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) may be key mediators of the therapeutic response to antidepressants. Therefore, we investigated whether AMI mediates changes in these specific trophic factors in the intact and degenerating nigrostriatal system. Chronic AMI treatment mediates an increase in nigral BDNF both before and during ongoing degeneration, suggesting it may contribute to neuroprotection observed in vivo. However, over time, AMI reduced BDNF levels in the striatum, indicating tricyclic therapy differentially regulates trophic factors within the nigrostriatal system. Combined, these results suggest that AMI treatment attenuates dopamine neuron loss and elicits significant trophic changes relevant to dopamine neuron survival.

Madhavan, L., Ourednik, V., & Ourednik, J. (2005). Grafted neural stem cells shield the host environment from oxidative stress. Annals of the New York Academy of Sciences, 1049, 185-8.

Here, we present our preliminary data showing that neural stem cells (NSCs) can prevent the degeneration of striatal neurons when transplanted into the CNS prior to intoxication with 3-nitropropionic acid (3-NP). In the adult CNS, the number of NSCs, a major source of neural cell populations and plasticity-modulating factors, is relatively low if compared to that of the developing brain. This, together with the adult growth-inhibitory environment, limits its regenerative capacity. Our recent observation has shown that grafted NSCs may rescue/protect neurons in the chronically impaired mesostriatal system. On the basis of this study and because we were also intrigued by our recent observations regarding the rescue/protective role of NSCs in vitro, we decided to test the hypothesis that grafted NSCs can also be deposited preventively in the CNS (and perhaps join the pool of endogenous NSCs of the intact host brain) for later buffering and maintenance of homeostasis when the host is exposed to oxidative stress.

Madhavan, L., Daley, B. F., Davidson, B. L., Boudreau, R. L., Lipton, J. W., Cole-Strauss, A., Steece-Collier, K., & Collier, T. J. (2015). Sonic Hedgehog Controls the Phenotypic Fate and Therapeutic Efficacy of Grafted Neural Precursor Cells in a Model of Nigrostriatal Neurodegeneration. PloS one, 10(9), e0137136.

The expression of soluble growth and survival promoting factors by neural precursor cells (NPCs) is suggested to be a prominent mechanism underlying the protective and regenerative effects of these cells after transplantation. Nevertheless, how and to what extent specific NPC-expressed factors contribute to therapeutic effects is not well understood. Using RNA silencing, the current study investigated the roles of two donor NPC molecules, namely glial cell-line derived neurotrophic factor (GDNF) and sonic hedgehog (SHH), in the protection of substantia nigra dopamine neurons in rats treated with 6-hydroxydopamine (6-OHDA). Analyses indicate that as opposed to the knock-down of GDNF, SHH inhibition caused a profound decline in nigrostriatal neuroprotection. Further, SHH silencing also curbed endogenous neurogenesis and the migration of host brdU+/dcx+ neural precursors into the striatum, which was present in the animals receiving control or GDNF silenced NPCs. A change in graft phenotype, mainly reflected by a reduced proportion of undifferentiated nestin+ cells, as well as a significantly greater host microglial activity, suggested an important role for these processes in the attenuation of neuroprotection and neurogenesis upon SHH silencing. Overall these studies reveal core mechanisms fundamental to grafted NPC-based therapeutic effects, and delineate the particular contributions of two graft-expressed molecules, SHH and GDNF, in mediating midbrain dopamine neuron protection, and host plasticity after NPC transplantation.

Madhavan, L., Teves, J. M., Bhargava, V., Kirwan, K., Corenblum, M. J., Justiniano, R., Wondrak, G. T., Anandhan, A., Flores, A. J., Schipper, D. A., Khalpey, Z., Sligh, J. E., Curiel-Lewansdrowski, C., & Sherman, S. J. (2017). Parkinson’s disease skin fibroblasts display signature alterations in growth, redox homeostasis, mitochondrial function and autophagy. Frontiers in Neuroscience.

The discovery of biomarkers for Parkinson’s disease (PD) is challenging due to the heterogeneous nature of this disorder, and a poor correlation between the underlying pathology and the clinically expressed phenotype. An ideal biomarker would inform on PD-relevant pathological changes via an easily assayed biological characteristic, which reliably tracks clinical symptoms. Human dermal (skin) fibroblasts are accessible peripheral cells that constitute a patient-specific system, which potentially recapitulates the PD chronological and epigenetic aging history. Here, we compared primary skin fibroblasts obtained from individuals diagnosed with late-onset sporadic PD, and healthy age-matched controls. These fibroblasts were studied from fundamental viewpoints of growth and morphology, as well as redox, mitochondrial, and autophagic function. It was observed that fibroblasts from PD subjects had higher growth rates, and appeared distinctly different in terms of morphology and spatial organization in culture, compared to control cells. It was also found that the PD fibroblasts exhibited significantly compromised mitochondrial structure and function when assessed via morphological and oxidative phosphorylation assays. Additionally, a striking increase in baseline macroautophagy levels was seen in cells from PD subjects. Exposure of the skin fibroblasts to physiologically relevant stress, specifically ultraviolet irradiation (UVA), further exaggerated the autophagic dysfunction in the PD cells. Moreover, the PD fibroblasts accumulated higher levels of reactive oxygen species (ROS) coupled with lower cell viability upon UVA treatment. In essence, these studies highlight primary skin fibroblasts as a patient-relevant model that captures fundamental PD molecular mechanisms, and supports their potential utility to develop diagnostic and prognostic biomarkers for the disease.

Madhavan, L., Daley, B. F., Sortwell, C. E., & Collier, T. J. (2012). Endogenous neural precursors influence grafted neural stem cells and contribute to neuroprotection in the parkinsonian rat. The European journal of neuroscience, 35(6), 883-95.

Neuroprotective and neurorescue effects after neural stem/precursor cell (NPC) transplantation have been reported, but the mechanisms underlying such phenomena are not well understood. Our recent findings in a rat Parkinson's disease (PD) model indicate that transplantation of NPCs before a 6-hydroxydopamine (6-OHDA) insult can result in nigrostriatal protection which is associated with endogenous NPC proliferation, migration and neurogenesis. Here, we sought to determine whether the observed endogenous NPC response (i) contributes to transplanted NPC-mediated neuroprotection; and/or (ii) affects graft phenotype and function. Host Fischer 344 rats were administered the antimitotic agent cytosine-β-d-arabinofuranoside (Ara-C) to eliminate actively proliferating endogenous neural precursors before being transplanted with NPCs and treated with 6-OHDA to induce nigrostriatal degeneration. Behavioral and histological analyses demonstrate that the neuroprotective response observed in NPC transplanted animals which had not received Ara-C was significantly attenuated in animals which did receive pre-transplant Ara-C. Also, while grafts in Ara-C-treated animals showed no decrease in cell number, they exhibited significantly reduced expression of the neural stem cell regulators nestin and sonic hedgehog. In addition, inhibition of the endogenous NPC response resulted in an exaggerated host glial reaction. Overall, the study establishes for the first time that endogenous NPCs contribute to transplanted NPC-mediated therapeutic effects by affecting both grafted and mature host cells in unique ways. Thus, both endogenous and transplanted NPCs are important in creating an environment suitable for neural protection and rescue, and harnessing their synergistic interaction may lead to the optimization of cell-based therapies for PD.