Meredith Hay

Meredith Hay

Professor, Physiology
Professor, Evelyn F Mcknight Brain Institute
Professor, Psychology
Professor, Physiological Sciences - GIDP
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-7384

Work Summary

Our lab is focused on the development of novel peptides to inhibit this inflammatory cascade and improve brain blood flow. These peptides are designed to significantly improve serum half-life and penetrate the blood-brain-barrier. These peptides act to inhibit the inflammatory pathways at both the level of brain blood vessels and the brain itself.

Research Interest

Dr. Hay is internationally known for her work in cardiovascular neurobiology and her current studies on the role of sex and sex hormones in the development of hypertension. She has been continuously funded by the NIH and other sources for the past 26 years. She has extensive experience in central renin angiotensin mechanisms, neurophysiology and reactive oxygen and cytosolic calcium neuroimaging and in advancing knowledge related to central mechanisms of neurohumoral control of the circulation. She is a Professor of Physiology at the University of Arizona College of Medicine and maintains active participation in the American Physiological Society, the Society of Neuroscience, AAAS, and has served on numerous editorial boards of prestigious scientific journals and grant review panels for the National Institutes of Health and the National American Heart Association. The primary focus of Dr. Hay’s laboratory is the understanding of the biophysical and cellular mechanisms underlying neurotransmitter modulation of sympathetic outflow and ultimately arterial blood pressure. The scientific questions being asked are: 1) What central neurotransmitter mechanisms are involved in the normal regulation of cardiovascular function? 2) Does the development of some forms of hypertension involve biophysical or molecular alteration in the neurotransmitter mechanisms regulating cardiovascular control? 3) Can these central signal transduction systems, which control sympathetic outflow and ultimately arterial blood pressure, be altered in order to prevent or attenuate the development of some forms of hypertension? 4) Are there gender related differences in some of these mechanisms?Dr. Hay has extensive national experience in university-wide administration and interdisciplinary research program development. Prior to coming to the University of Arizona in 2008 as Executive Vice President and Provost, Dr. Hay was the Vice President for Research for the University of Iowa, where she worked with state and federal lawmakers, private sector representatives, and local community groups to broaden both private and public support for research universities. Dr. Hay, a Texas native, earned her B.A. in psychology from the University of Colorado, Denver, her M.S. in neurobiology from the University of Texas at San Antonio, and her Ph.D. in cardiovascular pharmacology from the University of Texas Health Sciences Center, San Antonio. She trained as a postdoctoral fellow in the Cardiovascular Center at the University of Iowa College of Medicine and in the Department of Molecular Physiology and Biophysics at Baylor College of Medicine in Houston. She was a tenured faculty member of the University of Missouri-Columbia from 1996-2005. Prior to Missouri, she was a faculty member in the Department of Physiology at the University of Texas Health Science Center- San Antonio.

Publications

Hay, M. (2001). Subcellular mechanisms of area postrema activation. Clinical and experimental pharmacology & physiology, 28(7), 551-7.
Hayward, L., Hay, M., & Felder, R. B. (1993). Acute resetting of the carotid sinus baroreflex by aortic depressor nerve stimulation. The American journal of physiology, 264(4 Pt 2), H1215-22.

The effect of prolonged aortic depressor nerve (ADN) stimulation on carotid sinus baroreflex regulation of arterial pressure (AP) and renal sympathetic nerve activity (RSNA) was examined in anesthetized rabbits. Ramp increases in carotid sinus pressure (CSP) were repeated before and after 5 min of bilateral ADN stimulation. One minute after ADN stimulation the curve relating AP to CSP had shifted up and to the right, characterized by significant increases (P 0.05) in the maximum (91 +/- 2 to 101 +/- 3 mmHg; mean +/- SE), midpoint (118 +/- 7 to 125 +/- 8 mmHg CSP), and minimum (45 +/- 3 to 53 +/- 4 mmHg) of the AP reflex curve. There was a parallel shift downward of the curve relating RSNA to CSP, characterized by significant decreases in the maximum [100 +/- 0 to 66 +/- 8% of maximum control RSNA value (%max)], the range (90 +/- 2 to 59 +/- 8%max), and the gain (-1.0 +/- 0.2 to -0.5 +/- 0.1%max/mmHg) of the RSNA reflex curve. Values returned to control within 10 min of cessation of ADN stimulation. These results suggest that central neurons processing baroreflex information from one set of mechanoreceptors can be reset by convergent signals arising from another baroreceptor site.

Hay, M., & Kunze, D. L. (1994). Calcium-activated potassium channels in rat visceral sensory afferents. Brain research, 639(2), 333-6.

The purpose of the present study was to describe, at the single-channel level, the activity of a calcium-sensitive potassium channel in rat visceral-sensory neurons which has been suggested to be involved in sensory neuron excitability. Single-channel recordings in the inside-out configuration identified a 220 pS conductance calcium-activated potassium channel (KCa). From a -20 mV holding potential, increasing [Ca2+]i from 0.01 microM to 1.0 microM increased the open probability of this channel 92% (from 0.12 to 0.23). However, from a +20 mV holding potential, increasing [Ca2+]i from 0.01 to 1.0 microM increased the open probability by 326% (from 0.15 to 0.64). In addition, this large conductance KCa channel was blocked by TEA (1.0 microM) and charybdotoxin (40 microM) when applied to the external surface. These results are the first to characterize a large conductance KCa channel in the sensory afferent neurons of the rat nodose ganglia and should further expand the understanding of the ionic currents involved in the regulation of sensory afferent neuronal activity.

Xue, B., & Hay, M. (2003). 17beta-estradiol inhibits excitatory amino acid-induced activity of neurons of the nucleus tractus solitarius. Brain research, 976(1), 41-52.

The effects of 17beta-estradiol (17betaE2) on spontaneous and excitatory amino acid (EAA) induced nucleus tractus solitarius (NTS) neuronal activity were investigated by electrophysiological and immunohistochemical experiments in ovariectomized female Sprague-Dawley rats. Out of 62 NTS neurons tested, 42 were inhibited (68%) following iontophoretic application of 17betaE2 in a current-dependent manner. The averaged firing rate decreased from 3.06+/-0.40 to 0.78+/-0.17 Hz. The inhibitory responses were rapid in onset (within 1 min) and variable in duration (2-4 min). The inhibitory effects of 17betaE2 were blocked by simultaneously applied 17betaE2 antagonist ICI182,780, but not by GABA antagonist, bicuculline and phaclofen. L-Glutamate, AMPA or NMDA enhanced the activity of 71, 73 or 69% of NTS cells tested, respectively. The excitatory effects of EAA were significantly inhibited in the presence of 17betaE2. Fluorescent immunohistochemistry revealed that all subnuclei of the NTS contained high levels of estrogen receptors (ERs) immunoreactivity. These results suggest that 17betaE2 inhibits spontaneous and EAA-induced NTS neuronal activity through 17betaE2 activation of ERs.

Hay, M. (2016). Sex, the brain and hypertension: brain oestrogen receptors and high blood pressure risk factors. Clinical science (London, England : 1979), 130(1), 9-18.

Hypertension is a major contributor to worldwide morbidity and mortality rates related to cardiovascular disease. There are important sex differences in the onset and rate of hypertension in humans. Compared with age-matched men, premenopausal women are less likely to develop hypertension. However, after age 60, the incidence of hypertension increases in women and even surpasses that seen in older men. It is thought that changes in levels of circulating ovarian hormones as women age may be involved in the increase in hypertension in older women. One of the key mechanisms involved in the development of hypertension in both men and women is an increase in sympathetic nerve activity (SNA). Brain regions important for the regulation of SNA, such as the subfornical organ, the paraventricular nucleus and the rostral ventral lateral medulla, also express specific subtypes of oestrogen receptors. Each of these brain regions has also been implicated in mechanisms underlying risk factors for hypertension such as obesity, stress and inflammation. The present review brings together evidence that links actions of oestrogen at these receptors to modulate some of the common brain mechanisms involved in the ability of hypertensive risk factors to increase SNA and blood pressure. Understanding the mechanisms by which oestrogen acts at key sites in the brain for the regulation of SNA is important for the development of novel, sex-specific therapies for treating hypertension.