Michael F Brown

Michael F Brown

Professor, Chemistry and Biochemistry-Sci
Professor, Applied Mathematics - GIDP
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 621-2163

Research Interest

Michael F. Brown is Professor of Chemistry & Biochemistry at the University of Arizona. He is co-director of the Biological Physics Program and the Chemical Physics Program, and was a co-founder of the Biological Chemistry Program at the University of Arizona. He is internationally renowned for his work on the molecular basis of activation of G-protein-coupled receptors that are the targets for the majority of pharmaceuticals and medicines used by humans. The focus of his work is on biomembranes, with a particular emphasis on lipid-protein interactions in relation to potential drug targets involving membrane proteins. He is involved with investigation of the molecular basis of visual signaling involving rhodopsin. Moreover, Professor Brown is an expert in nuclear magnetic resonance (NMR) spectroscopy. His activities in the area of biomolecular NMR spectroscopy involve the devolvement and application of methods for studying the structure and dynamics of biomolecules. Michael Brown has authored over 130 original research papers, 10 book chapters, 4 book reviews, and has published more than 275 abstracts. His current H-index is 43. He numbers among his coworkers various prominent scientists worldwide. He presents his work frequently at national and international conferences, and is the recipient of a number of major awards. Professor Brown's many contributions have established him as a major voice in the area of biomembrane research and biomolecular spectroscopy. He is frequently a member of various review panels and exerts an influence on science policy at the national level. Among his accolades, he is an elected Fellow of the American Association for the Advancement of Science; American Physical Society; Japan Society for the Promotion of Science; and the Biophysical Society. He is a Fellow of the Galileo Circle of the University of Arizona. Most recently, he received the Avanti Award of the Biophysical Society. This premier honor recognizes his vast and innovative contributions to the field of membrane biophysics, and groundbreaking work in the development of NMR techniques to characterize lipid structure and dynamics. Most recently he presented the 2014 Avanti lecture of the Biophysical Society.

Publications

Thurmond, R. L., Dodd, S. W., & Brown, M. F. (1991). Molecular areas of phospholipids as determined by 2H NMR spectroscopy. Comparison of phosphatidylethanolamines and phosphatidylcholines. Biophysical Journal, 59(1), 108-113.

PMID: 2015377;PMCID: PMC1281123;Abstract:

The role of lipid diversity in biomembranes is one of the major unsolved problems in biochemistry. One parameter of possible importance is the mean cross-sectional area occupied per lipid molecule, which may be related to formation of nonbilayer structures and membrane protein function. We have used 2H NMR spectroscopy to compare the properties of 1,2-diperdeuteriopalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE-d62) and 1,2-diperdeuteriopalmitoyl-sn-glycero-3-phosphocholine (DPPC-d62) in the L(α) phase. We find that DPPE has greater segmental order than DPPC, and that this increase in order is related to the smaller area per acyl chain found for DPPE. Values of the mean cross-sectional chain area are calculated using a simple diamond lattice model for the acyl chain configurational statistics, together with dilatometry data. The results obtained for the mean area per molecule are comparable with those from low angle x-ray diffraction studies.

Brown, M. F., & Seelig, J. (1977). Ion-induced changes in head group conformation of lecithin bilayers. Nature, 269(5630), 721-723.
Struts, A. V., Barmasov, A. V., & Brown, M. F. (2016). Spectral Methods for Study of the G-Protein-Coupled Receptor Rhodopsin. II. Magnetic Resonance Spectroscopy. Optics and Spectroscopy, 118, 711-717.
Thurmond, R. L., Lindblom, G., & Brown, M. F. (1990). Influences of membrane curvature in lipid hexagonal phases studied by deuterium NMR spectroscopy. Biochemical and Biophysical Research Communications, 173(3), 1231-1238.

PMID: 2268326;Abstract:

The presence of reversed hexagonal phase, HII, favoring lipids in membranes has been proposed to be significant in various biological processes. Therefore an understanding of the HII phase and the transition from the lamellar to hexagonal phase is of importance. We have applied deuterium NMR spectroscopy to study the bilayer and reversed hexagonal phases of 1-perdeuteriopalmitoyl-2-linoleoyl-sn-glycero-3-phosphoethanolamine. The difference in packing between the HII and Lα phases leads to smaller segmental order parameters in the former case. Since the order profiles are sensitive to the geometry of the aggregates, they can be used to extract structural information about the phases. We present a new means of calculating the radius of curvature, R1, for the HII phase from 2H NMR data. This method gives a value of R1 = 18.1 Å, which is in agreement with current understanding of the structure of the HII phase and with x-ray diffraction data. © 1990 Academic Press, Inc.

Nevzorov, A. A., Trouard, T. P., & Brown, M. F. (1998). Lipid Bilayer Dynamics from Simultaneous Analysis of Orientation and Frequency Dependence of Deuterium Spin-Lattice and Quadrupolar Order Relaxation. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 58, 2259-2281.