Michael F Brown

Michael F Brown

Professor, Chemistry and Biochemistry-Sci
Professor, Applied Mathematics - GIDP
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 621-2163

Research Interest

Michael F. Brown is Professor of Chemistry & Biochemistry at the University of Arizona. He is co-director of the Biological Physics Program and the Chemical Physics Program, and was a co-founder of the Biological Chemistry Program at the University of Arizona. He is internationally renowned for his work on the molecular basis of activation of G-protein-coupled receptors that are the targets for the majority of pharmaceuticals and medicines used by humans. The focus of his work is on biomembranes, with a particular emphasis on lipid-protein interactions in relation to potential drug targets involving membrane proteins. He is involved with investigation of the molecular basis of visual signaling involving rhodopsin. Moreover, Professor Brown is an expert in nuclear magnetic resonance (NMR) spectroscopy. His activities in the area of biomolecular NMR spectroscopy involve the devolvement and application of methods for studying the structure and dynamics of biomolecules. Michael Brown has authored over 130 original research papers, 10 book chapters, 4 book reviews, and has published more than 275 abstracts. His current H-index is 43. He numbers among his coworkers various prominent scientists worldwide. He presents his work frequently at national and international conferences, and is the recipient of a number of major awards. Professor Brown's many contributions have established him as a major voice in the area of biomembrane research and biomolecular spectroscopy. He is frequently a member of various review panels and exerts an influence on science policy at the national level. Among his accolades, he is an elected Fellow of the American Association for the Advancement of Science; American Physical Society; Japan Society for the Promotion of Science; and the Biophysical Society. He is a Fellow of the Galileo Circle of the University of Arizona. Most recently, he received the Avanti Award of the Biophysical Society. This premier honor recognizes his vast and innovative contributions to the field of membrane biophysics, and groundbreaking work in the development of NMR techniques to characterize lipid structure and dynamics. Most recently he presented the 2014 Avanti lecture of the Biophysical Society.

Publications

Brown, M., Brown, M. F., Rajamoorthi, K., Petrache, H. I., & McIntosh, T. J. (2005). Packing and viscoelasticity of polyunsaturated omega-3 and omega-6 lipid bilayers as seen by 2H NMR and X-ray diffraction. Journal of the American Chemical Society, 127(5).

Polyunsaturated phospholipids of the omega-3 and omega-6 classes play key roles in cellular functions, yet their mechanisms of biological action are still a matter of debate. Using deuterium ((2)H) NMR spectroscopy and small-angle X-ray diffraction, we show how membrane properties are modified by docosahexaenoic (DHA; 22:6) and arachidonic (AA; 20:4) acyl chains of the omega-3 and the omega-6 families, respectively. Structural and dynamical differences due to polyunsaturation are evident in both the ordered and disordered phases of mixed-chain (16:0)(22:6)PC and (16:0)(20:4)PC bilayers. Due to the lower chain melting temperature, the omega-6 AA bilayer is more disordered in the fluid (L(alpha)) state than the omega-3 DHA bilayer; it is thinner with a larger area per lipid. The thermal hysteresis observed for the DHA bilayer may represent the influences of angle-iron conformers in the gel state and back-bended, hairpinlike conformers in the fluid state, consistent with molecular dynamics studies. Interpretation of the (2)H NMR order profiles of (16:0-d(31))(22:6)PC and (16:0-d(31))(20:4)PC together with X-ray electron density profiles reveals an uneven distribution of mass; i.e., the sn-1 saturated chain is displaced toward the membrane center, whereas the sn-2 polyunsaturated chain is shifted toward the bilayer aqueous interface. Moreover, the (2)H NMR relaxation rates are increased by the presence of omega-6 AA chains compared to omega-3 DHA chains. When evaluated at the same amplitude of motion, relaxation parameters give a naturally calibrated scale for comparison of fluid lipid bilayers. Within this framework, polyunsaturated bilayers are relatively soft to bending and area fluctuations on the mesoscale approaching molecular dimensions. Significant differences are evident in the viscoelastic properties of the omega-3 and omega-6 bilayers, a possibly biologically relevant feature that distinguishes between the two phospholipid classes.

Brown, M. F. (2017). Collective Dynamics in Lipid Membranes. Applied Magnetic Resonance.
Gibson, N. J., & Brown, M. F. (1991). Membrane lipid influences on the energetics of the metarhodopsin I and metarhodopsin II conformational states of rhodopsin probed by flash photolysis.. Photochemistry and Photobiology, 54(6), 985-992.

PMID: 1775536;Abstract:

We have investigated the relationship between rhodopsin photochemical function and the retinal rod outer segment (ROS) disk membrane lipid composition using flash photolysis techniques. Bovine rhodopsin was combined with various phospholipids to form recombinant membrane vesicles, in which the lipid acyl chain composition was maintained at that of egg phosphatidylcholine (PC), while the nature of the headgroups was varied. The ratio of metarhodopsin II (MII)/metarhodopsin I (MI) in these recombinants produced by an actinic flash was investigated as a function of pH, and compared with the photochemical activity observed for rhodopsin in native ROS membranes and dimyristoylphosphatidylcholine recombinants. In recombinants made with lipids derived from egg PC, as well as in native ROS membranes, MI and MII were found to be present in a pH-dependent, acid-base equilibrium on the millisecond timescale. The recombinants made with phospholipids containing unsaturated acyl chains were capable of full native-like MII production, but each demonstrated a titration curve with a different pK. In addition, some of the recombinants exhibited apparent deviations from the Henderson-Hasselbalch curve shape. The presence of either phosphatidylethanolamine (PE) or phosphatidylserine (PS) headgroups appeared to increase the amount of MII produced. This may result from alteration of the curvature free energy, in the case of PE, and from the influence of the membrane surface potential in the case of PS. An investigation of the effects of temperature on the MI-MII transition in native ROS membranes and the recombinants was also carried out.(ABSTRACT TRUNCATED AT 250 WORDS)

Wiedmann, T. S., Pates, R. D., Beach, J. M., Salmon, A., & Brown, M. F. (1988). Lipid-protein interactions mediate the photochemical function of rhodopsin. Biochemistry, 27(17), 6469-6474.

PMID: 3219348;Abstract:

We have investigated the molecular features of recombinant membranes that are necessary for the photochemical function of rhodopsin. The magnitude of the metarhodopsin I to metarhodopsin II phototransient following a 25% ± 3% bleaching flash was used as a criterion of photochemical activity at 28°C and pH 7.0. Nativelike activity of rhodopsin can be reconstituted with an extract of total lipids from rod outer segment membranes, demonstrating that the protein is minimally perturbed by the reconstitution protocol. Rhodopsin photochemical activity is enhanced by phosphatidylethanolamine head groups and docosahexaenoyl (22:6ω3) acyl chains. An equimolar mixture of phosphatidylethanolamine and phosphatidylcholine containing 50 mol % docosahexaenoyl chains results in optimal photochemical function. These results suggest the importance of both the head-group and acyl chain composition of the rod outer segment lipids in the visual process. The extracted rod lipids and those lipid mixtures favoring the conformational change from metarhodopsin I to II can undergo lamellar (Lα) to inverted hexagonal (HII) phase transitions near physiological temperature. Interaction of rhodopsin with membrane lipids close to a Lα to HII (or cubic) phase boundary may thus lead to properties which influence the energetics of conformational states of the protein linked to visual function. © 1988 American Chemical Society.

Brown, M. F., Ellena, J. F., Trindle, C., & Williams, G. D. (1985). Frequency dependence of spin-lattice relaxation times of lipid bilayers. The Journal of Chemical Physics, 84(1), 465-470.

Abstract:

2H and 13C spin-lattice (T1) relaxation time studies of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in the lamellar, liquid crystalline (Lα) phase are discussed. It is shown that the T1-1 results as a function of Larmor frequency ω0 are statistically better described by an ω0-1/2 dependence than by an ω 0-1 or ω0-2 dependence. © 1985 American Institute of Physics.