Nicholas A Delamere

Nicholas A Delamere

Department Head, Physiology
Professor, Physiology
Professor, Ophthalmology
Member of the Graduate Faculty
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-6425

Research Interest

Nicholas Delamere, Ph.D., studies how ocular pressure (pressure in the eye) is controlled and the way cells transport fluid, and seeks to find methods to regulate the mechanisms involved. His goal is to develop drugs that reduce intraocular pressure, thereby decreasing the severity of glaucoma and damage to the retina. His cataract research also offers a promising model for tissue preservation, which will delay the onset of cataracts. https://delamerelab.medicine.arizona.edu/

Publications

Shahidullah, M., & Delamere, N. A. (2006). NO donors inhibit Na,K-ATPase activity by a protein kinase G-dependent mechanism in the nonpigmented ciliary epithelium of the porcine eye. British journal of pharmacology, 148(6), 871-80.

1. We developed a novel method to isolate nonpigmented epithelial (NPE) cells from porcine eyes in order to examine Na,K-ATPase responses to nitric oxide (NO) donors specifically in the epithelium. 2. Cells were treated with NO donors and other test compounds for 20 min prior to Na,K-ATPase activity measurement. 3. NO donors, sodium nitroprusside (SNP, 1 microM-1 mM), sodium azide (100 nM-1 microM) and S-nitroso-N-acetylpenicillamine (1 microM-1 mM) caused significant concentration-dependent inhibition of Na,K-ATPase activity. Detection of nitrite in the medium of L-arginine and SNP-treated NPE confirmed NO generation. 4. Concentration-dependent inhibition of Na,K-ATPase was also obtained by L-arginine (1-3 mM), a physiological precursor of NO and 8p-CPT-cGMP (1-100 microM), a cell permeable analog of cGMP. The L-arginine effect was abolished when the NO synthesizing enzyme, NO-synthase, was inhibited by L-NAME (100 microM). 5. The inhibitory effect of SNP or sodium azide on Na,K-ATPase activity was suppressed by soluble guanylate cyclase (sGC) inhibitors, ODQ (10 microM) or methylene blue (10 microM). 6. The inhibitory effect of 8p-CPT-cGMP on Na,K-ATPase was abolished by protein kinase G (PKG) inhibitors, H-8 (1 microM) and H-9 (20 microM), but not by the protein kinase A (PKA) inhibitor H-89 (100 nM). H-8 and H-9 partially suppressed the inhibitory effect of SNP on Na,K-ATPase. 7. Taken together the results indicate that Na,K-ATPase inhibition response to NO donors involves activation of sGC, generation of cGMP and activation of PKG. These findings suggest that Na,K-ATPase inhibition in NPE may contribute to the ability of NO donors to reduce aqueous humor secretion.