Rebecca A Mosher

Rebecca A Mosher

Associate Professor, Plant Sciences
Associate Director, School of Plant Sciences
Associate Professor, Applied BioSciences - GIDP
Associate Professor, Genetics - GIDP
Associate Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-4185

Work Summary

Dr. Mosher studies methylation of DNA in plants and how these epigenetic marks are transmitted from parent to offspring.

Research Interest

Rebecca Mosher, PhD, studies how epigenetic information is passed from parent to offspring. Epigenetic information refers to signals laid on top of DNA sequence that affect how and when genes are turned on. Examples of epigenetic signals include chemical modifications of DNA, packaging of DNA around proteins, or the position of DNA in the nucleus. Beginning with Mendel’s observations of pea plants, we have developed a robust understanding of how genetic information in the form of DNA is passed from parent to offspring, but we are only beginning to comprehend how and when epigenetic information is passed from generation to generation. Some epigenetic marks are erased and re-established during reproduction, while others are inherited for many generations. Using plants as models, the Mosher lab studies how tiny RNA molecules place and erase epigenetic marks during reproduction and how the epigenetic marks from the maternal and paternal genomes interact after fertilization.

Publications

Mosher, R. A., Melnyk, C. W., Kelly, K. A., Dunn, R. M., Studholme, D. J., & Baulcombe, D. C. (2009). Uniparental expression of PolIV-dependent siRNAs in developing endosperm of Arabidopsis. Nature, 460(7252), 283-286.

PMID: 19494814;Abstract:

Most eukaryotes produce small RNA (sRNA) mediators of gene silencing that bind to Argonaute proteins and guide them, by base pairing, to an RNA target. MicroRNAs (miRNAs) that normally target messenger RNAs for degradation or translational arrest are the best-understood class of sRNAs. However, in Arabidopsis thaliana flowers, miRNAs account for only 5% of the sRNA mass and less than 0.1% of the sequence complexity. The remaining sRNAs form a complex population of more than 100,000 different small interfering RNAs (siRNAs) transcribed from thousands of loci. The biogenesis of most of the siRNAs in Arabidopsis are dependent on RNA polymerase IV (PolIV), a homologue of DNA-dependent RNA polymerase II. A subset of these PolIV-dependent (p4)-siRNAs are involved in stress responses, and others are associated with epigenetic modifications to DNA or chromatin; however, the biological role is not known for most of them. Here we show that the predominant phase of p4-siRNA accumulation is initiated in the maternal gametophyte and continues during seed development. Expression of p4-siRNAs in developing endosperm is specifically from maternal chromosomes. Our results provide the first evidence for a link between genomic imprinting and RNA silencing in plants. © 2009 Macmillan Publishers Limited. All rights reserved.

Grover, J., Kendall, T., Baten, A., King, G. J., & Mosher, R. A. (2017). Maternal RNA-directed DNA methylation is required for seed development in Brassica rapa. bioRxiv.

This preprint has been reviewed and is currently being revised for publication at Plant Journal.

Wang, Y., Tsukamoto, T., Noble, J. A., Liu, X., Mosher, R. A., & Palanivelu, R. (2017). Arabidopsis LORELEI, a Maternally Expressed Imprinted Gene, Promotes Early Seed Development. PLANT PHYSIOLOGY, 175(2), 758-773.
Bowman, J. L., Kohchi, T., Yamato, K. T., Jenkins, J., Shu, S., Ishizaki, K., Yamaoka, S., Nishihama, R., Nakamura, Y., Berger, F., Adam, C., Aki, S. S., Althoff, F., Araki, T., Arteaga-Vazquez, M. A., Balasubrmanian, S., Barry, K., Bauer, D., Boehm, C. R., , Briginshaw, L., et al. (2017). Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell, 171(2), 287-304.e15.
Rhind, N., Chen, Z., Yassour, M., Thompson, D. A., Haas, B. J., Habib, N., Wapinski, I., Roy, S., Lin, M. F., Heiman, D. I., Young, S. K., Furuya, K., Guo, Y., Pidoux, A., Chen, H. M., Robbertse, B., Goldberg, J. M., Aoki, K., Bayne, E. H., , Berlin, A. M., et al. (2011). Comparative functional genomics of the fission yeasts. Science, 332(6032), 930-936.

PMID: 21511999;PMCID: PMC3131103;Abstract:

The fission yeast clade - comprising Schizosaccharomyces pombe, S. octosporus, S. cryophilus, and S. japonicus - occupies the basal branch of Ascomycete fungi and is an important model of eukaryote biology. A comparative annotation of these genomes identified a near extinction of transposons and the associated innovation of transposon-free centromeres. Expression analysis established that meiotic genes are subject to antisense transcription during vegetative growth, which suggests a mechanism for their tight regulation. In addition, trans-acting regulators control new genes within the context of expanded functional modules for meiosis and stress response. Differences in gene content and regulation also explain why, unlike the budding yeast of Saccharomycotina, fission yeasts cannot use ethanol as a primary carbon source. These analyses elucidate the genome structure and gene regulation of fission yeast and provide tools for investigation across the Schizosaccharomyces clade.