Sean W Limesand

Sean W Limesand

Professor, Animal and Comparative Biomedical Sciences
Professor, Physiological Sciences - GIDP
Director, Agriculture Research Complex
Professor, Obstetrics and Gynecology
Chair, Institutional Animal Care-USE Committee
Professor, BIO5 Institute
Department Affiliations
Contact
(520) 626-8903

Work Summary

Our current research program use an integrative approach at the whole animal, isolated organ, cellular and molecular levels to investigate developmental adaptations in pancreatic β-cells and insulin sensitivity that result from early life risk factors, such as intrauterine growth restriction, and increase risk of glucose intolerance and Diabetes in later life.

Research Interest

Sean W. Limesand, PhD, is an Associate Professor in the School of Animal and Comparative Biomedical Sciences at the University of Arizona in the College of Agriculture and Life Sciences. He is also a member of the UA’s BIO5 Institute and Department of Obstetrics and Gynecology. Dr. Limesand is nationally and internationally recognized for his work studying fetal endocrinology and metabolism in pregnancy and in pregnancies compromised by pathology such as intrauterine growth restriction and diabetes. His research is focused on defining developmental consequences resulting from a compromised intrauterine environment. Specifically, he is focused on fetal adaptations in insulin secretion and action that when altered in utero create lifelong metabolic complications. Dr. Limesand has lead the charge on prenatal origins of –cell dysfunction as the Principal Investigator for a number of federal and foundation grant awards and published more than 40 peer-reviewed articles on topics related to this research. Keywords: Diabetes, Pregnancy, Perinatal Biology

Publications

MacKo, A. R., Yates, D. T., Chen, X., Green, A. S., Kelly, A. C., Brown, L. D., & Limesand, S. W. (2013). Elevated plasma norepinephrine inhibits insulin secretion, but adrenergic blockade reveals enhanced β-cell responsiveness in an ovine model of placental insufficiency at 0.7 of gestation. Journal of Developmental Origins of Health and Disease, 4(5), 402-410.

Abstract:

In pregnancies complicated by placental insufficiency (PI), fetal hypoglycemia and hypoxemia progressively worsen during the third trimester, which increases circulating norepinephrine (NE). Pharmacological adrenergic blockade (ADR-block) at 0.9 gestation revealed that NE inhibits insulin secretion and enhanced β-cell responsiveness in fetuses with PI-induced intrauterine growth restriction (IUGR). NE concentrations in PI fetuses at 0.7 gestation were threefold greater compared with age-matched controls, but the levels were similar to near-term controls. Therefore, our objective was to determine whether elevations in plasma NE concentrations inhibit insulin secretion and produce compensatory β-cell responsiveness in PI fetuses at 0.7 gestation. Fetal insulin was measured under basal, glucose-stimulated insulin secretion (GSIS) and glucose-potentiated arginine-stimulated insulin secretion (GPAIS) conditions in the absence and presence of an ADR-block. Placental weights were 38% lower (P 0.05) in PI fetus than in controls, but fetal weights were not different. PI fetuses had lower (P 0.05) basal blood oxygen content, plasma glucose, insulin-like growth factor-1 and insulin concentrations and greater plasma NE concentrations (891 ± 211 v. 292 ± 65 pg/ml; P 0.05) than controls. GSIS was lower in PI fetuses than in controls (0.34 ± 0.03 v. 1.08 ± 0.06 ng/ml; P 0.05). ADR-block increased GSIS in PI fetuses (1.19 ± 0.11 ng/ml; P 0.05) but decreased GSIS in controls (0.86 ± 0.02 ng/ml; P 0.05). Similarly, GPAIS was 44% lower (P 0.05) in PI fetuses than in controls, and ADR-block increased (P 0.05) GPAIS in PI fetuses but not in controls. Insulin content per islet was not different between treatments. We conclude that elevations in fetal plasma NE suppress insulin concentrations, and that compensatory β-cell stimulus-secretion responsiveness is present before IUGR. © 2013 Cambridge University Press and the International Society for Developmental Origins of Health and Disease.

Yates, D. T., Löest, C., Ross, T. T., Hallford, D. M., Carter, B. H., & Limesand, S. W. (2011). Effects of bacterial lipopolysaccharide injection on white blood cell counts, hematological variables, and serum glucose, insulin, and cortisol concentrations in ewes fed low- or high-protein diets. Journal of Animal Science, 89(12), 4286-4293.

PMID: 21788428;PMCID: PMC3319785;Abstract:

Bacterial lipopolysaccharide endotoxins (LPS) elicit inflammatory responses reflective of acute bacterial infection. We determined if feeding ewes high-CP (15.5%) or low-CP (8.5%) diets for 10 d altered inflammatory responses to an intravenous bolus of 0 (control), 0.75 (L75), or 1.50 (L150) μg of LPS/ kg of BW in a 2 × 3 factorial arrangement of treatments (n = 5/treatment). Rectal temperatures, heart and respiratory rates, blood leukocyte concentrations, and serum cortisol, insulin, and glucose concentrations were measured for 24 h after an LPS bolus (bolus = 0 h). In general, rectal temperatures were greater (P ≤ 0.05) in control ewes fed high CP, but LPS increased (P ≤ 0.05) rectal temperatures in a dose-dependent manner at most times between 2 and 24 h after the bolus. Peak rectal temperatures in L75 and L150 occurred 4 h after the bolus. A monophasic, dose-independent increase (P ≤ 0.023) in serum cortisol occurred from 0.5 to 24 h after the bolus, with peak cortisol at 4 h. Serum insulin was increased (P ≤ 0.016) by LPS in a dose-dependent manner from 4 to 24 h after the bolus. Insulin did not differ between control ewes fed high- and low- CP diets but was greater (P 0.001) in L75 ewes fed low CP compared with high CP and in L150 ewes fed high CP compared with low CP. Increased insulin was not preceded by increased serum glucose. Total white blood cell concentrations were not affected (P ≥ 0.135) by LPS, but the neutrophil and monocyte fractions of white blood cells were increased (P ≤ 0.047) by LPS at 12 and 24 h and at 24 h after the bolus, respectively, and the lymphocyte fraction was increased (P = 0.037) at 2 h and decreased (P ≤ 0.006) at 12 and 24 h after the bolus. Red blood cell and hemoglobin concentrations and hematocrit (%) were increased (P ≤ 0.022) by LPS at 2 and 4 h after the bolus. Rectal temperatures and serum glucose were greater (P ≤ 0.033) in ewes fed a high-CP diet before LPS injection, but these effects were lost at and within 2.5 h of the bolus, respectively. Feeding high-CP diets for 10 d did not reduce inflammation in ewes during the first 24 h after LPS exposure but may benefit livestock by preventing acute insulin resistance when endotoxin exposure is mild. © 2011 American Society of Animal Science. All rights reserved.

Limesand, S. W., Rozance, P. J., Macko, A. R., Anderson, M. J., Kelly, A. C., & Hay Jr., W. W. (2013). Reductions in insulin concentrations and β-cell mass precede growth restriction in sheep fetuses with placental insufficiency. American Journal of Physiology - Endocrinology and Metabolism, 304(5), E516-E523.

PMID: 23277186;PMCID: PMC3602661;Abstract:

In pregnancy complicated by placental insufficiency (PI) and intrauterine growth restriction (IUGR), the fetus near term has reduced basal and glucose-stimulated insulin concentrations and reduced β-cell mass. To determine whether suppression of insulin concentrations and β-cell mass precedes reductions in fetal weight, which would implicate insulin deficiency as a cause of subsequent IUGR, we measured basal and glucose-stimulated insulin concentrations and pancreatic histology at 0.7 gestation in PI fetuses. Placental weights in the PI pregnancies were 40% lower than controls (265 ± 26 vs. 442 ± 41 g, P 0.05), but fetal weights were not different. At basal conditions blood oxygen content, plasma glucose concentrations, and plasma insulin concentrations were lower in PI fetuses compared with controls (2.5 ± 0.3 vs. 3.5 ± 0.3 mmol/l oxygen, P 0.05; 1.11 ± 0.09 vs. 1.44 ± 0.12 mmol/l glucose; 0.12 ± 0.01 vs. 0.27 ± 0.02 ng/ml insulin; P 0.05). During a steady-state hyperglycemic clamp (~2.5 ± 0.1 mmol/l), glucose-stimulated insulin concentrations were lower in PI fetuses than controls (0.28 ± 0.02 vs. 0.55 ± 0.04 ng/ml; P 0.01). Plasma norepinephrine concentrations were 3.3-fold higher (P 0.05) in PI fetuses (635 ± 104 vs. 191 ± 91 pg/ml). Histological examination revealed less insulin area and lower β-cell mass and rates of mitosis. The pancreatic parenchyma was also less dense (P 0.01) in PI fetuses, but no differences were found for pancreatic progenitor cells or other endocrine cell types. These findings show that hypoglycemia, hypoxemia, and hypercatecholaminemia are present and potentially contribute to lower insulin concentrations and β-cell mass due to slower proliferation rates in early third-trimester PI fetuses before discernible reductions in fetal weight. © 2013 the American Physiological Society.

Jeckel, K. M., Limesand, S. W., & Anthony, R. V. (2009). Specificity protein-1 and -3 trans-activate the ovine placental lactogen gene promoter. Molecular and Cellular Endocrinology, 307(1-2), 118-124.

PMID: 19389461;PMCID: PMC2700009;Abstract:

The proximal promoter (-383/+16) of the ovine placental lactogen (oPL) gene provides trophoblast-specific expression in vitro. Footprint 6 (FP6; -319/-349) lies within this region, and transfection of two-base pair mutations across FP6 into BeWo cells identified potential binding sites for CCAAT-enhancer binding protein (CEBP) and specificity proteins (Sp). Transfection of CEBP dominant negative or over-expression constructs did not impact transactivation of the proximal promoter. However, Sp1 and Sp3 over-expression constructs increased (p ≤ 0.05) transactivation. Additionally, Sp1 and Sp3 short-hairpin RNA constructs reduced (p ≤ 0.01) transactivation of the proximal promoter. In EMSA supershift assays, Sp1 and Sp3 antibodies were able to inhibit migration of the complexes formed with nuclear extracts from BeWo cells and ovine chorionic binucleate cells (oBNC). Furthermore, Southwestern analysis of oBNC nuclear extracts identified a nuclear protein corresponding with Sp3, identified by Western analysis. In conclusion, these results indicate that Sp1 and Sp3 are capable of interacting with FP6 of the oPL gene proximal promoter and function to enhance its transactivation. © 2009 Elsevier Ireland Ltd. All rights reserved.

Barry, J. S., Davidsen, M. L., Limesand, S. W., Galan, H. L., Friedman, J. E., R., T., & Hay Jr., W. W. (2006). Developmental changes in ovine myocardial glucose transporters and insulin signaling following hyperthermia-induced intrauterine fetal growth restriction. Experimental Biology and Medicine, 231(5), 566-575.

PMID: 16636305;Abstract:

Developmental changes in ovine myocardial glucose transporters and insulin signaling following hyperthermia-induced intrauterine fetal growth restriction (IUGR) were the focus of our study. Our objective was to test the hypothesis that the fetal ovine myocardium adapts during an IUGR gestation by increasing glucose transporter protein expression, plasma membranebound glucose transporter protein concentrations, and insulin signal transduction protein concentrations. Growth measurements and whole heart tissue were obtained at 55 days gestational age (dGA), 90 dGA, and 135 dGA (term = 145 dGA) in fetuses from control (C) and hyperthermic (HT) pregnant sheep. Additionally, in 135 dGA animals, arterial blood was obtained and Doppler ultrasound was used to determine umbilical artery systolic (S) and diastolic (D) flow velocity waveform profiles to calculate pulsatility (S - D/mean) and resistance (S - D/S) indices. Myocardial Glut-1, Glut-4, insulin signal transduction proteins involved in Glut-4 translocation, and glycogen content were measured. Compared to age-matched controls, HT 90-dGA fetal body weights and HT 135-dGA fetal weights and gross heart weights were lower. Heart weights as a percent of body weights were similar between C and HT sheep at 135 dGA. HT 135-dGA animals had (i) lower fetal arterial plasma glucose and insulin concentrations, (ii) lower arterial blood oxygen content and higher plasma lactate concentrations, (iii) higher myocardial Glut-4 plasma membrane (PM) protein and insulin receptor β protein (IRβ) concentrations, (iv) higher myocardial glycogen content, and (v) higher umbilical artery Doppler pulsatility and resistance indices. The HT ovine fetal myocardium adapts to reduced circulating glucose and insulin concentrations by increasing plasma membrane Glut-4 and IRβ protein concentrations. The increased myocardial Glut-4 PM and IRβ protein concentrations likely contribute to or increase the intracellular delivery of glucose and, together with the increased lactate concentrations, enhance glycogen synthesis, which allows for maintained myocardial growth commensurate with fetal body growth. Copyright © 2006 by the Society for Experimental Biology and Medicine.