Tally M Largent-Milnes

Tally M Largent-Milnes

Assistant Professor, Pharmacology
Assistant Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-6400

Research Interest

Dr. Tally Largent-Milnes Ph.D., is a Research Assistant Professor of Pharmacology at the University of Arizona. Dr. Largent-Milnes is a member of the International Association for the Study of Pain, the Society for Neuroscience, and the American Pain Society. Her major research focus is on trigeminal (Vc) synaptic physiology, neuropathic pain and rational design of multifunctional compounds to treat chronic pain. Dr. Largent-Milnes uses whole-cell patch clamp electrophysiology, immunohistochemistry, behavior, and pharmacology, to explore excitatory synaptic transmission between trigeminal afferents and nucleus caudalis (Vc) neurons as well as the adaptations that accompany certain pathologies/pharmacological interventions. Her work is critical to improve our understanding of the construction of the trigeminal system at the synaptic level, and will allow for the development of better therapeutics to treat select craniofacial pain disorders through her research.

Publications

Forte, B. L., Slosky, L. M., Zhang, H., Arnold, M. R., Staatz, W. D., Hay, M., Largent-Milnes, T. M., & Vanderah, T. W. (2016). Angiotensin-(1-7)/Mas receptor as an antinociceptive agent in cancer-induced bone pain. Pain, 157(12), 2709-2721.
BIO5 Collaborators
Meredith Hay, Tally M Largent-Milnes

Many cancerous solid tumors metastasize to the bone and induce pain (cancer-induced bone pain [CIBP]). Cancer-induced bone pain is often severe because of enhanced inflammation, rapid bone degradation, and disease progression. Opioids are prescribed to manage this pain, but they may enhance bone loss and increase tumor proliferation, further compromising patient quality of life. Angiotensin-(1-7) (Ang-(1-7)) binds and activates the Mas receptor (MasR). Angiotensin-(1-7)/MasR activation modulates inflammatory signaling after acute tissue insult, yet no studies have investigated whether Ang-(1-7)/MasR play a role in CIBP. We hypothesized that Ang-(1-7) inhibits CIBP by targeting MasR in a murine model of breast CIBP. 66.1 breast cancer cells were implanted into the femur of BALB/cAnNHsd mice as a model of CIBP. Spontaneous and evoked pain behaviors were assessed before and after acute and chronic administration of Ang-(1-7). Tissues were collected from animals for ex vivo analyses of MasR expression, tumor burden, and bone integrity. Cancer inoculation increased spontaneous pain behaviors by day 7 that were significantly reduced after a single injection of Ang-(1-7) and after sustained administration. Preadministration of A-779 a selective MasR antagonist prevented this reduction, whereas pretreatment with the AT2 antagonist had no effect; an AT1 antagonist enhanced the antinociceptive activity of Ang-(1-7) in CIBP. Repeated Ang-(1-7) administration did not significantly change tumor burden or bone remodeling. Data here suggest that Ang-(1-7)/MasR activation significantly attenuates CIBP, while lacking many side effects seen with opioids. Thus, Ang-(1-7) may be an alternative therapeutic strategy for the nearly 90% of patients with advanced-stage cancer who experience excruciating pain.

Francois-Moutal, L., Wang, Y., Moutal, A., Cottier, K. E., Melemedjian, O. K., Yang, X., Wang, Y., Ju, W., Largent-Milnes, T. M., Khanna, M., Vanderah, T. W., & Khanna, R. (2015). A membrane-delimited N-myristoylated CRMP2 peptide aptamer inhibits CaV2.2 trafficking and reverses inflammatory and postoperative pain behaviors. PAIN, 156(7), 1247-1264.
Moutal, A., Dustrude, E. T., Largent-Milnes, T. M., Vanderah, T. W., Khanna, M., & Khanna, R. (2017). Blocking CRMP2 SUMOylation reverses neuropathic pain. Molecular psychiatry.
Yamamoto, T., Nair, P., Largent-Milnes, T. M., Jacobsen, N. E., Davis, P., Ma, S., Yamamura, H. I., Vanderah, T. W., Porreca, F., Lai, J., & Hruby, V. J. (2011). Discovery of a potent and efficacious peptide derivative for δ/μ opioid agonist/neurokinin 1 antagonist activity with a 2',6'-dimethyl-L-tyrosine: in vitro, in vivo, and NMR-based structural studies. Journal of medicinal chemistry, 54(7), 2029-38.

Multivalent ligands with δ/μ opioid agonist and NK1 antagonist activities have shown promising analgesic potency without detectable sign of toxicities, including motor skill impairment and opioid-induced tolerance. To improve their biological activities and metabolic stability, structural optimization was performed on our peptide-derived lead compounds by introducing 2',6'-dimethyl-L-tyrosine (Dmt) instead of Tyr at the first position. The compound 7 (Dmt-D-Ala-Gly-Phe-Met-Pro-Leu-Trp-NH-[3',5'-(CF(3))(2)-Bzl]) showed improved multivalent bioactivities compared to those of the lead compounds, had more than 6 h half-life in rat plasma, and had significant antinociceptive efficacy in vivo. The NMR structural analysis suggested that Dmt(1) incorporation in compound 7 induces the structured conformation in the opioid pharmacophore (N-terminus) and simultaneously shifts the orientation of the NK1 pharmacophore (C-terminus), consistent with its affinities and activities at both opioid and NK1 receptors. These results indicate that compound 7 is a valuable research tool to seek a novel analgesic drug.

Slosky, L. M., Largent-Milnes, T. M., & Vanderah, T. W. (2015). Use of Animal Models in Understanding Cancer-induced Bone Pain. Cancer growth and metastasis, 8(Suppl 1), 47-62.

Many common cancers have a propensity to metastasize to bone. Although malignancies often go undetected in their native tissues, bone metastases produce excruciating pain that severely compromises patient quality of life. Cancer-induced bone pain (CIBP) is poorly managed with existing medications, and its multifaceted etiology remains to be fully elucidated. Novel analgesic targets arise as more is learned about this complex and distinct pain state. Over the past two decades, multiple animal models have been developed to study CIBP's unique pathology and identify therapeutic targets. Here, we review animal models of CIBP and the mechanistic insights gained as these models evolve. Findings from immunocompromised and immunocompetent host systems are discussed separately to highlight the effect of model choice on outcome. Gaining an understanding of the unique neuromolecular profile of cancer pain through the use of appropriate animal models will aid in the development of more effective therapeutics for CIBP.