Raina Margaret Maier

Raina Margaret Maier

Professor, Environmental Science
Professor, Pharmaceutical Sciences
Professor, Pharmacology and Toxicology
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 621-7231

Research Interest

Raina M Maier, PhD, is a Professor of Environmental Microbiology in the Department of Soil, Water and Environmental Science and Director of the University of Arizona NIEHS Superfund Research Program. She also serves as Director of the University of Arizona Center for Environmentally Sustainable Mining and as Deputy Director of the TRIF Water Sustainability Program. Dr. Maier is internationally known for her work on microbial surfactants (biosurfactants) including discovery of a new class of biosurfactants and of novel applications for these unique materials in remediation and green technologies. She is also recognized for her work on the relationships between microbial diversity and ecosystem function in oligotrophic environments such as carbonate caves, the Atacama desert, and mine tailings. Dr. Maier has published over 100 original research papers, authored 23 book chapters, and holds a patent on the use of biosurfactants to control zoosporic plant pathogens. She is the lead author on the textbook “Environmental Microbiology” currently in its second edition.Dr. Maier emphasizes a multidisciplinary approach to her work and has served as PI or co-PI on several large granting efforts including the UA NIEHS Superfund Research Program, the UA NSF Kartchner Caverns Microbial Observatory, and the UA NSF Collaborative Research in Chemistry grant on biosurfactants.

Publications

Ramirez, D. M., Vea, L., Field, J. A., Baker, P. B., Gandolfi, A. J., & Maier, R. M. (2017). Transferable Training Modules Building Environmental Education Opportunities With and for Mexican Community Health Workers (Promotores de Salud). FAMILY & COMMUNITY HEALTH, 40(4), 306-315.
Ramírez, D. M., Vea, L., Field, J. A., Baker, P. B., Gandolfi, A. J., & Maier, R. M. (2018). Transferable Training Modules: Building Environmental Education Opportunities With and for Mexican Community Health Workers (Promotores de Salud). Family & community health, 40(4), 306-315.

Community health workers (promotores de salud) have the ability to empower communities to mitigate negative health outcomes. Current training efforts in environmental topics are lacking. This project addressed this gap by developing 4 transferable training modules on environmental health. By applying a series of surveys, interviews, and trainings, we evaluated their relevance. Partners provided favorable feedback for 3 of the 4 modules. It was also learned that the development method could be improved by engaging technically trained promotores de salud in the role of co-creators. This project has implications for environmental justice communities as it can lessen information disparities.

Maier, R. M., Neilson, J. W., Artiola, J. F., Jordan, F. L., Gleen, E. P., & Descher, S. M. (2001). Remediation of metal-contaminated soil and sludge using biosurfactant technology. International Journal of Occupational Medicine and Environmental Health, 14(3), 241-248.

PMID: 11764852;Abstract:

Development of environmentally benign approaches to remediation of metal-contaminated soils and sewage sludges are needed to replace currently used techniques of either landfilling or metal extraction using caustic or toxic agents. We report results from four application technologies that use a metal-chelating biosurfactant, rhamnolipid, for removal of metals or metal-associated toxicity from metal-contaminated waste. The four applications include: 1) removal of metals from sewage sludge; 2) removal of metals from historically contaminated soils; 3) combined biosurfactant/phytoremediation of metal-contaminated soil; and 4) use of biosurfactant to facilitate biodegradation of the organic component of a metal-organic co-contaminated soil (in this case the biosurfactant reduces metal toxicity). These four technologies are nondestructive options for situations where the final goal is the removal of bioavailable and leachable metal contamination while maintaining a healthy ecosystem. Some of the approaches outlined may require multiple treatments or long treatment times which must be acceptable to site land-use plans and to the stakeholders involved. However, the end-product is a soil, sediment, or sludge available for a broad range of land use applications.

Dorn, J. G., Frye, R. J., & Maier, R. M. (2003). Effect of temperature, pH, and initial cell number on luxCDABE and nah gene expression during naphthalene and salicylate catabolism in the bioreporter organism Pseudomonas putida RB1353. Applied and Environmental Microbiology, 69(4), 2209-2216.

PMID: 12676702;PMCID: PMC154800;Abstract:

One limitation of employing lux bioreporters to monitor in situ microbial gene expression in dynamic, lab. oratory-scale systems is the confounding variability in the luminescent responses. For example, despite careful control of oxygen tension, growth stage, and cell number, luminescence from Pseudomonas putida RB1353, a naphthalene-degrading lux bioreporter, varied by more than sevenfold during saturated flow column experiments in our laboratory. Therefore, this study was conducted to determine what additional factors influence the luminescent response. Specifically, this study investigated the impact of temperature, pH, and initial cell number (variations within an order of magnitude) on the peak luminescence of P. putida RB1353 and the maximum degradation rate (Vmax) during salicylate and naphthalene catabolism. Statistical analyses based on general linear models indicated that under constant oxygen tension, temperature and pH accounted for 98.1% of the variability in luminescence during salicylate catabolism and 94.2 and 49.5% of the variability in Vmax during salicylate and naphthalene catabolism, respectively. Temperature, pH, and initial substrate concentration accounted for 99.9% of the variability in luminescence during naphthalene catabolism. Initial cell number, within an order of magnitude, did not have a significant influence on either peak luminescence or Vmax during salicylate and naphthalene catabolism. Over the ranges of temperature and pH evaluated, peak luminescence varied by more than 4 orders of magnitude. The minimum parameter deviation required to alter lux gene expression during salicylate and naphthalene catabolism was a change in temperature of 1°C, a change in pH of 0.2, or a change in initial cell number of 1 order of magnitude. Results from this study indicate that there is a need for careful characterization of the impact of environmental conditions on both the expression of the reporter and catabolic genes and the activities of the gene products. For example, even though lux gene expression was occurring at ∼35°C, the luciferase enzyme was inactive. Furthermore, this study demonstrates that with careful characterization and standardization of measurement conditions, the attainment of a reproducible luminescent response and an understanding of the response are feasible.

Drees, K. P., Abbaszadegan, M., & Maier, R. M. (2003). Comparative electrochemical inactivation of bacteria and bacteriophage. Water Research, 37(10), 2291-2300.

PMID: 12727237;Abstract:

Electric fields and currents have been shown to be capable of disinfecting drinking water and reducing the numbers of bacteria and yeast in food. However, little research has been conducted regarding the effectiveness of electric fields and currents in the inactivation of viruses. The objective of this study was to compare the ability of bacteria and bacteriophage to survive exposure to direct electric current in an electrochemical cell, where they would be subject to irreversible membrane permeabilization processes, direct oxidation of cellular/viral constituents by electric current, and disinfection by electrochemically generated oxidants. Suspensions of the bacteria Escherichia coli and Pseudomonas aeruginosa and bacteriophage MS2 and PRD1 at both high (approximately 1×106CFU or PFU/mL) and low (approximately 1×103CFU or PFU/mL) population densities were exposed to currents ranging from 25 to 350mA in 5s pulses. Post-exposure plaque counts of the bacteriophage were proportionally higher than bacterial culturable counts at corresponding current exposures. E. coli and MS2 were then exposed to 5mA for 20min at both high and low population densities. The inactivation rate of E. coli was 2.1-4.3 times greater than that of MS2. Both bacteria and bacteriophage were more resistant to exposure to direct current at higher population densities. Also, amelioration of inactivation within the electrochemical cell by the reducing agent glutathione indicates the major mechanism of inactivation in the electrochemical cell is disinfection by electrochemically generated oxidants. The implications of these results are that technologies relying upon direct current to reduce the numbers of microbes in food and water may not be sufficient to reduce the numbers of potentially pathogenic viruses and ensure the safety of the treated food or water. © 2003 Elsevier Science Ltd. All rights reserved.