David W Galbraith

David W Galbraith

Professor, Plant Science
Professor, Biomedical Engineering
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 621-9153

Work Summary

I examine the molecular functions of the different cells found in the tissues and organs of plants and animals and how they combine these functions to optimize the health and vigor of the organism.

Research Interest

David Galbraith obtained undergraduate and graduate degrees in Biochemistry from the University of Cambridge, and postdoctoral training as a NATO Fellow at Stanford University. His first academic appointment was at the University of Nebraska Lincoln, and he became Professor of Plant Sciences at the University of Arizona in 1989. His research has focused on the development of instrumentation and methods for the analysis of biological cells, organs, and systems. He is internationally recognized as a pioneer in the development and use of flow cytometry and sorting in plants, developing widely-used methods for the analysis of genome size and cell cycle status, and for the production of somatic hybrids. He also was among the first to develop methods for the analysis of gene expression within specific cell types, using markers based on Fluorescent Protein expression for flow sorting these cells, and microarray platforms for analysis of their transcriptional activities and protein complements. Current interests include applications of highly parallel platforms for transcript and protein profiling of minimal sample sizes, and for analysis of genetic and epigenetic mechanisms that regulate gene expression during normal development and in diseased states, specifically pancreatic cancer. He is also funded to study factors involved in the regulation of bud dormancy in Vitis vinifera, and has interests in biodiversity and improvement of third-world agriculture. He has published more than 180 scholarly research articles, holds several patents, was elected a Fellow of the American Association for Advancement of Science in 2002, and serves on the editorial board of Cytometry Part A. He is widely sought as a speaker, having presented over 360 seminars in academic, industrial and conference settings. He was elected Secretary of the International Society for Advancement of Cytometry in 2016. Keywords: Plant and Animal Cellular Engineering; Biological Instrumentation; Flow Cytometry and Sorting

Publications

Shoemaker, R. C., Couche, L. J., & Galbraith, D. W. (1986). Characterization of somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Reports, 5(3), 178-181.

PMID: 24248126;Abstract:

Seventeen cultivars of cotton (Gossypium hirsutum L.) were evaluated for callus initiation and maintenance using 3 initiation media and 3 maintenance media. After a series of transfers of a 3% glucose media, calli were placed on a 3% sucrose medium. After several weeks calli were observed for the presence of embryo-like structures. Cultivars Coker 201 and Coker 315 were identified as embryogenic. Embryogenic callus has since been routinely obtained within 6 weeks by initiating callus on glucose media for 3-4 weeks followed by transfer to sucrose media. Histological examination has shown that embryos are derived from isodiametric, densely cytoplasmic cells and follow predictable patterns of development. Upon maturity, transfer to auxin-free media with reduced sucrose levels results in embryo germination. Regenerated plants can be transferred to greenhouse within 90 days of callus initiation. © 1986 Springer-Verlag.

Kimzey, M., Zarate, X., Galbraith, D., & Lau, S. (2011). Optimizing microarray-based in situ transcription-translation of proteins for MALDI mass spectrometry. Analytical Biochemistr, 414, 282-286.
Birnbaum, K., Jung, J. W., Wang, J. Y., Lambert, G. M., Hirst, J. A., Galbraith, D. W., & Benfey, P. N. (2005). Cell type-specific expression profiting in plants via cell sorting of protoplasts from fluorescent reporter lines. NATURE METHODS, 2(8), 615-619.
Mittal, A., Balasubramanian, R., Cao, J., Singh, P., Subramanian, S., Hicks, G., Nothnagel, E. A., Abidi, N., Janda, J., Galbraith, D. W., & Rock, C. D. (2014). TOPOISOMERASE 6B is involved in chromatin remodelling associated with control of carbon partitioning into secondary metabolites and cell walls, and epidermal morphogenesis in Arabidopsis. Journal of Experimental Botany, 65(15), 4217-4239.

Plant growth is continuous and modular, a combination that allows morphogenesis by cell division and elongation and serves to facilitate adaptation to changing environments. The pleiotropic phenotypes of the harlequin (hlq) mutant, isolated on the basis of ectopic expression of the abscisic acid (ABA)- and auxin-inducible proDc3:GUS reporter gene, were previously characterized. Mutants are skotomorphogenic, have deformed and collapsed epidermal cells which accumulate callose and starch, cell walls abundant in pectins and cell wall proteins, and abnormal and reduced root hairs and leaf trichomes. hlq and two additional alleles that vary in their phenotypic severity of starch accumulation in the light and dark have been isolated, and it is shown that they are alleles of bin3/hyp6/rhl3/Topoisomerase6B. Mutants and inhibitors affecting the cell wall phenocopy several of the traits displayed in hlq. A microarray analysis was performed, and coordinated expression of physically adjacent pairs/sets of genes was observed in hlq, suggesting a direct effect on chromatin. Histones, WRKY and IAA/AUX transcription factors, aquaporins, and components of ubiquitin-E3-ligase-mediated proteolysis, and ABA or biotic stress response markers as well as proteins involved in cellular processes affecting carbon partitioning into secondary metabolites were also identified. A comparative analysis was performed of the hlq transcriptome with other previously published TopoVI mutant transcriptomes, namely bin3, bin5, and caa39 mutants, and limited concordance between data sets was found, suggesting indirect or genotype-specific effects. The results shed light on the molecular mechanisms underlying the det/cop/fus-like pleiotropic phenotypes of hlq and support a broader role for TopoVI regulation of chromatin remodelling to mediate development in response to environmental and hormonal signals.

Galbraith, D., & Galbraith, D. W. (1990). Isolation and flow cytometric characterization of plant protoplasts. Methods in cell biology, 33.