Judith Bronstein

Judith Bronstein

Professor, Ecology and Evolutionary Biology
Professor, Entomology / Insect Science - GIDP
University Distinguished Professor
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Contact
(520) 621-3534

Research Interest

Judith L. Bronstein is University Distinguished Professor of Ecology and Evolutionary Biology, with a joint appointment in the Department of Entomology. Dr. Bronstein’s large, active lab focuses on the ecology and evolution of interspecific interactions, particularly on the poorly-understood, mutually beneficial ones (mutualisms). Using a combination of field observations, experiments, and theory, they are examining how population processes, abiotic conditions, and the community context determine net effects of interactions for the fitness of each participant species. Specific conceptual areas of interest include: (i) conflicts of interest between mutualists and their consequences for the maintenance of beneficial outcomes; (ii) the causes and consequences of "cheating" within mutualism; (iii) context-dependent outcomes in both mutualisms and antagonisms; and (iv) anthropogenic threats to mutualisms. In addition, she is Editor-in-Chief of The American Naturalist, a leading international journal in ecology and evolution. An award-winning instructor, Dr. Bronstein teaches at both the undergraduate and graduate levels; she has also run a large training grant administered by BIO5 that places life sciences graduate students in public school classrooms around Tucson. She serves in leadership positions in the College of Science (including chairing the College of Science Promotion and Tenure Committee for 2013), at the University, and at the Arizona-Sonora Desert Museum, where she is a member of the Board of Trustees and Chair of the Science and Conservation Council.

Publications

Adler, L. S., & Bronstein, J. L. (2004). Attracting antagonists: Does floral nectar increase leaf herbivory?. Ecology, 85(6), 1519-1526.

Abstract:

Traits that are attractive to mutualists may also attract antagonists, resulting in conflicting selection pressures. Here we develop the idea that increased floral nectar production can, in some cases, increase herbivory. In these situations, selection for increased nectar production to attract pollinators may be constrained by a linked cost of herbivore attraction. In support of this hypothesis, we report that experimentally supplementing nectar rewards in Datura stramonium led to increased oviposition by Manduca sexta, a sphingid moth that pollinates flowers, but whose larvae feed on leaf tissue. We speculate that nectar composition may provide information about plant nutritional status or defense that floral visitors could use to make oviposition decisions. Thus, selection by floral visitors and leaf herbivores may be inextricably intertwined, and herbivores may represent a relatively unexplored agent of selection on nectar traits.

Bronstein, J. L. (1989). A mutualism at the edge of its range. Experientia, 45(7), 622-637.

Abstract:

Comparing populations that differ in access to mutualists can suggest how traits associated with these interactions have evolved. I discuss geographical and seasonal variation in the success of a primarily tropical mutualism (the fig/pollinator interaction), and evaluate some possible adaptations allowing it to persist at the edge of its range. Pollinators probably have difficulty in seasonal sites because 1) fig trees flower rarely in winter and 2) trees that do flower are less detectable and more difficult to reach. Fig biologists believe that seasonality must have selected for adaptations allowing pollinators to survive winter. However, geographical comparisons do not support two current ideas, the synchrony-breakdown hypothesis and the specificity-breakdown hypothesis. I pose two alternatives: plasticity of fruit and wasp developmental time, and adaptations of free-living fig wasps. I also distinguish between the impact of seasonality on monoecious versus dioecious figs; the latter group appear better adapted to reproduce in cool climates. A combination of comparative, observational, and experimental approaches has great potential for advancing our understanding of mutualisms. © 1989 Birkhäuser Verlag Basel.

Ferrière, R., Gauduchon, M., & Bronstein, J. L. (2007). Evolution and persistence of obligate mutualists and exploiters: Competition for partners and evolutionary immunization. Ecology Letters, 10(2), 115-126.

PMID: 17257099;Abstract:

Mutualisms are ubiquitous in nature, as is their exploitation by both conspecific and heterospecific cheaters. Yet, evolutionary theory predicts that cheating should be favoured by natural selection. Here, we show theoretically that asymmetrical competition for partners generally determines the evolutionary fate of obligate mutualisms facing exploitation by third-species invaders. When asymmetry in partner competition is relatively weak, mutualists may either exclude exploiters or coexist with them, in which case their co-evolutionary response to exploitation is usually benign. When asymmetry is strong, the mutualists evolve towards evolutionary attractors where they become extremely vulnerable to exploiter invasion. However, exploiter invasion at an early stage of the mutualism's history can deflect mutualists' co-evolutionary trajectories towards slightly different attractors that confer long-term stability against further exploitation. Thus, coexistence of mutualists and exploiters may often involve an historical effect whereby exploiters are co-opted early in mutualism history and provide lasting 'evolutionary immunization' against further invasion. © 2007 Blackwell Publishing Ltd/CNRS.

Chamberlain, S., Rudgers, J., & Bronstein, J. (0). How context-dependent are species interactions?. Ecology Letters.
Kiers, E. T., Palmer, T. M., Ives, A. R., Bruno, J. F., & Bronstein, J. L. (2010). Mutualisms in a changing world: An evolutionary perspective. Ecology Letters, 13(12), 1459-1474.

PMID: 20955506;Abstract:

There is growing concern that rapid environmental degradation threatens mutualistic interactions. Because mutualisms can bind species to a common fate, mutualism breakdown has the potential to expand and accelerate effects of global change on biodiversity loss and ecosystem disruption. The current focus on the ecological dynamics of mutualism under global change has skirted fundamental evolutionary issues. Here, we develop an evolutionary perspective on mutualism breakdown to complement the ecological perspective, by focusing on three processes: (1) shifts from mutualism to antagonism, (2) switches to novel partners and (3) mutualism abandonment. We then identify the evolutionary factors that may make particular classes of mutualisms especially susceptible or resistant to breakdown and discuss how communities harbouring mutualisms may be affected by these evolutionary responses. We propose a template for evolutionary research on mutualism resilience and identify conservation approaches that may help conserve targeted mutualisms in the face of environmental change. © 2010 Blackwell Publishing Ltd/CNRS.