Judith Bronstein

Judith Bronstein

Professor, Ecology and Evolutionary Biology
Professor, Entomology / Insect Science - GIDP
University Distinguished Professor
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Contact
(520) 621-3534

Research Interest

Judith L. Bronstein is University Distinguished Professor of Ecology and Evolutionary Biology, with a joint appointment in the Department of Entomology. Dr. Bronstein’s large, active lab focuses on the ecology and evolution of interspecific interactions, particularly on the poorly-understood, mutually beneficial ones (mutualisms). Using a combination of field observations, experiments, and theory, they are examining how population processes, abiotic conditions, and the community context determine net effects of interactions for the fitness of each participant species. Specific conceptual areas of interest include: (i) conflicts of interest between mutualists and their consequences for the maintenance of beneficial outcomes; (ii) the causes and consequences of "cheating" within mutualism; (iii) context-dependent outcomes in both mutualisms and antagonisms; and (iv) anthropogenic threats to mutualisms. In addition, she is Editor-in-Chief of The American Naturalist, a leading international journal in ecology and evolution. An award-winning instructor, Dr. Bronstein teaches at both the undergraduate and graduate levels; she has also run a large training grant administered by BIO5 that places life sciences graduate students in public school classrooms around Tucson. She serves in leadership positions in the College of Science (including chairing the College of Science Promotion and Tenure Committee for 2013), at the University, and at the Arizona-Sonora Desert Museum, where she is a member of the Board of Trustees and Chair of the Science and Conservation Council.

Publications

Holland, J. N., DeAngelis, D. L., & Bronstein, J. L. (2002). Population dynamics and mutualism: Functional responses of benefits and costs. American Naturalist, 159(3), 231-244.

PMID: 18707376;Abstract:

We develop an approach for studying population dynamics resulting from mutualism by employing functional responses based on density-dependent benefits and costs. These functional responses express how the population growth rate of a mutualist is modified by the density of its partner. We present several possible dependencies of gross benefits and costs, and hence net effects, to a mutualist as functions of the density of its partner. Net effects to mutualists are likely a monotonically saturating or unimodal function of the density of their partner. We show that fundamental differences in the growth, limitation, and dynamics of a population can occur when net effects to that population change linearly, unimodally, or in a saturating fashion. We use the mutualism between senita cactus and its pollinating seed-eating moth as an example to show the influence of different benefit and cost functional responses on population dynamics and stability of mutualisms. We investigated two mechanisms that may alter this mutualism's functional responses: distribution of eggs among flowers and fruit abortion. Differences in how benefits and costs vary with density can alter the stability of this mutualism. In particular, fruit abortion may allow for a stable equilibrium where none could otherwise exist.

Bronstein, J., Eliyahu, D., McCall, A., Lauck, M., & Trachtenbrodt, A. (2015). Minute pollinators: the role of thrips (Thysanoptera) as pollinators of pointleaf manzanita, Arctostaphylos pungens (Ericaceae). Journal of Pollination Biology, 16, 64-71.
Miranda, V., Navarro, P., Davidowitz, G., Bronstein, J., & Stock, S. (2013). Effect of insect host age and diet on the fitness of the entomopathogenic nematode-bacteria mutualism. Symbiosis, 61, 145-153.

DOI: 10.1007/s13199-013-0266-7

Kjellberg, F., Bronstein, J. L., Ginkel, G. v., Greeff, J. M., Moore, J. C., Bossu-Dupriez, N., Chevolot, M., & Michaloud, G. (2005). Clutch size: A major sex ratio determinant in fig pollinating wasps?. Comptes Rendus - Biologies, 328(5), 471-476.

PMID: 15948636;Abstract:

Under local mate competition, sex ratio theory predicts that increasing numbers of ovipositing females (foundresses) on a site should lead to higher proportions of males in their broods. Fig pollinators have confirmed this prediction. It is also predicted that with decreasing clutch size, solitary foundresses should produce increasing proportions of sons. We show this to be true. Further, when several females compete, brood size decreases. As a result, the proportion of males increases, and this could provide a mechanistic explanation of sex ratio response to numbers of colonizing females. Therefore, sex ratio data on fig wasps need to be reassessed to determine whether females 'count' other foundresses, as is generally accepted, or whether they simply 'count' the number of eggs that they lay. © 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Bronstein, J. L., Vernet, D., & Hossaert-McKey, M. (1998). Do fig wasps interfere with each other during oviposition?. Entomologia Experimentalis et Applicata, 87(3), 321-324.