Nan-kuei Chen

Nan-kuei Chen

Associate Professor, Biomedical Engineering
Associate Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-0060

Research Interest

I am an MR physicist with extensive expertise in fast image acquisition methodology, pulse sequence design, and artifact correction for neuro MRI. In the past 18 years, I have developed novel approaches effectively addressing various types of challenging MRI artifacts, ranging from echo-planar imaging (EPI) geometric distortions, to susceptibility effect induced signal loss, to EPI Nyquist artifact, to motion-induced phase errors and aliasing artifacts in interleaved EPI based diffusion-weighted imaging. I am the original developer of multiplexed sensitivity encoded (MUSE) MRI, which can measure human brain connectivity in vivo at high spatial-resolution and accuracy, as shown in the publications listed below. More generally, my research involves the application of MR protocols in translational contexts. I have served as PI on NIH-funded R01, R21 and R03 grants, and have had extensive experience as a co-investigator on NIH-funded projects. The current focus of my research includes: * Development of high-throughput and motion-immune clinical MRI for imaging challenging patient populations * Imaging of neuronal connectivity networks for studies of neurological diseases * High-fidelity and multi-contrast MRI guided intervention * Characterization and correction of MRI artifacts * Signal processing and algorithm development * MRI studies of human development

Publications

Zhuang, J., Madden, D. J., Duong-Fernandez, X., Chen, N. K., Cousins, S. W., Potter, G. G., Diaz, M. T., & Whitson, H. E. (2018). Language processing in age-related macular degeneration associated with unique functional connectivity signatures in the right hemisphere. Neurobiology of aging, 63, 65-74.

Age-related macular degeneration (AMD) is a retinal disease associated with significant vision loss among older adults. Previous large-scale behavioral studies indicate that people with AMD are at increased risk of cognitive deficits in language processing, particularly in verbal fluency tasks. The neural underpinnings of any relationship between AMD and higher cognitive functions, such as language processing, remain unclear. This study aims to address this issue using independent component analysis of spontaneous brain activity at rest. In 2 components associated with visual processing, we observed weaker functional connectivity in the primary visual cortex and lateral occipital cortex in AMD patients compared with healthy controls, indicating that AMD might lead to differences in the neural representation of vision. In a component related to language processing, we found that increasing connectivity within the right inferior frontal gyrus was associated with better verbal fluency performance across all older adults, and the verbal fluency effect was greater in AMD patients than controls in both right inferior frontal gyrus and right posterior temporal regions. As the behavioral performance of our patients is as good as that of controls, these findings suggest that preservation of verbal fluency performance in AMD patients might be achieved through higher contribution from right hemisphere regions in bilateral language networks. If that is the case, there may be an opportunity to promote cognitive resilience among seniors with AMD or other forms of late-life vision loss.

Wang, F., Huang, T., Lin, F., Chuang, T., Chen, N., Chung, H., Chen, C., & Kwong, K. K. (2005). PROPELLER EPI: an MRI technique suitable for diffusion tensor imaging at high field strength with reduced geometric distortions. Magnetic resonance in medicine, 54(5), 1232-40.

A technique suitable for diffusion tensor imaging (DTI) at high field strengths is presented in this work. The method is based on a periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) k-space trajectory using EPI as the signal readout module, and hence is dubbed PROPELLER EPI. The implementation of PROPELLER EPI included a series of correction schemes to reduce possible errors associated with the intrinsically higher sensitivity of EPI to off-resonance effects. Experimental results on a 3.0 Tesla MR system showed that the PROPELLER EPI images exhibit substantially reduced geometric distortions compared with single-shot EPI, at a much lower RF specific absorption rate (SAR) than the original version of the PROPELLER fast spin-echo (FSE) technique. For DTI, the self-navigated phase-correction capability of the PROPELLER EPI sequence was shown to be effective for in vivo imaging. A higher signal-to-noise ratio (SNR) compared to single-shot EPI at an identical total scan time was achieved, which is advantageous for routine DTI applications in clinical practice.

Chang, H., & Chen, N. (2016). Joint correction of Nyquist artifact and minuscule motion-induced aliasing artifact in interleaved diffusion weighted EPI data using a composite two-dimensional phase correction procedure. Magnetic resonance imaging, 34(7), 974-9.

Diffusion-weighted imaging (DWI) obtained with interleaved echo-planar imaging (EPI) pulse sequence has great potential of characterizing brain tissue properties at high spatial-resolution. However, interleaved EPI based DWI data may be corrupted by various types of aliasing artifacts. First, inconsistencies in k-space data obtained with opposite readout gradient polarities result in Nyquist artifact, which is usually reduced with 1D phase correction in post-processing. When there exist eddy current cross terms (e.g., in oblique-plane EPI), 2D phase correction is needed to effectively reduce Nyquist artifact. Second, minuscule motion induced phase inconsistencies in interleaved DWI scans result in image-domain aliasing artifact, which can be removed with reconstruction procedures that take shot-to-shot phase variations into consideration. In existing interleaved DWI reconstruction procedures, Nyquist artifact and minuscule motion-induced aliasing artifact are typically removed subsequently in two stages. Although the two-stage phase correction generally performs well for non-oblique plane EPI data obtained from well-calibrated system, the residual artifacts may still be pronounced in oblique-plane EPI data or when there exist eddy current cross terms. To address this challenge, here we report a new composite 2D phase correction procedure, which effective removes Nyquist artifact and minuscule motion induced aliasing artifact jointly in a single step. Our experimental results demonstrate that the new 2D phase correction method can much more effectively reduce artifacts in interleaved EPI based DWI data as compared with the existing two-stage artifact correction procedures. The new method robustly enables high-resolution DWI, and should prove highly valuable for clinical uses and research studies of DWI.

Song, X., Panych, L. P., Chou, Y., & Chen, N. (2014). A Study of Long-Term fMRI Reproducibility Using Data-Driven Analysis Methods. International journal of imaging systems and technology, 24(4), 339-349.

The reproducibility of functional magnetic resonance imaging (fMRI) is important for fMRI-based neuroscience research and clinical applications. Previous studies show considerable variation in amplitude and spatial extent of fMRI activation across repeated sessions on individual subjects even using identical experimental paradigms and imaging conditions. Most existing fMRI reproducibility studies were typically limited by time duration and data analysis techniques. Particularly, the assessment of reproducibility is complicated by a fact that fMRI results may depend on data analysis techniques used in reproducibility studies. In this work, the long-term fMRI reproducibility was investigated with a focus on the data analysis methods. Two spatial smoothing techniques, including a wavelet-domain Bayesian method and the Gaussian smoothing, were evaluated in terms of their effects on the long-term reproducibility. A multivariate support vector machine (SVM)-based method was used to identify active voxels, and compared to a widely used general linear model (GLM)-based method at the group level. The reproducibility study was performed using multisession fMRI data acquired from eight healthy adults over 1.5 years' period of time. Three regions-of-interest (ROI) related to a motor task were defined based upon which the long-term reproducibility were examined. Experimental results indicate that different spatial smoothing techniques may lead to different reproducibility measures, and the wavelet-based spatial smoothing and SVM-based activation detection is a good combination for reproducibility studies. On the basis of the ROIs and multiple numerical criteria, we observed a moderate to substantial within-subject long-term reproducibility. A reasonable long-term reproducibility was also observed from the inter-subject study. It was found that the short-term reproducibility is usually higher than the long-term reproducibility. Furthermore, the results indicate that brain regions with high contrast-to-noise ratio do not necessarily exhibit high reproducibility. These findings may provide supportive information for optimal design/implementation of fMRI studies and data interpretation.

Guzman Perez-Carrillo, G., Chen, N., & Lemole, G. M. (2018). DTI of cranial nerves using high-resolution multi-shot EPI (MUSE). Journal of Neurosurgery/TBD.