Nicholas A Delamere

Nicholas A Delamere

Department Head, Physiology
Professor, Physiology
Professor, Ophthalmology
Member of the Graduate Faculty
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-6425

Research Interest

Nicholas Delamere, Ph.D., studies how ocular pressure (pressure in the eye) is controlled and the way cells transport fluid, and seeks to find methods to regulate the mechanisms involved. His goal is to develop drugs that reduce intraocular pressure, thereby decreasing the severity of glaucoma and damage to the retina. His cataract research also offers a promising model for tissue preservation, which will delay the onset of cataracts. https://delamerelab.medicine.arizona.edu/

Publications

Mandal, A., Shahidullah, M., & Delamere, N. A. (2015). Calcium entry via connexin hemichannels in lens epithelium. Experimental eye research, 132, 52-8.

Exposure to hyposmotic solution causes release of ATP from lens cells via hemichannels. Because hemichannel opening feasibly could swamp the cells with calcium, we carried out studies to measure the magnitude of the increase in cytoplasmic calcium concentration caused by hemichannel opening. In studies on porcine lens epithelial cells in primary culture, propidium iodide (PI) uptake was measured as an index of hemichannel opening. PI uptake was increased significantly in cells exposed to hyposmotic solution. The PI increase under hyposmotic conditions was suppressed by GAP 27, a connexin inhibitor peptide. In studies on cells loaded with Fura-2, continuous exposure to hyposmotic solution caused a cytoplasmic calcium concentration increase that peaked within ∼30 s then remained elevated at or below the peak response for more than 60 min. The peak calcium concentration was 186 ± 2.3 nM compared to a baseline value of 98.0 ± 1.4 nM. The calcium concentration increased a lot further in cells exposed to A23187 (2.5 μM) or the sodium-calcium exchange inhibitor SN-6 (10 μM) added after the onset of the calcium rise in hyposmotic solution. The cytoplasmic calcium increase in hyposmotic solution was abolished by GAP 27. Calcium returned to baseline in cells exposed to hyposmotic solution then treated with GAP 27 starting 2 min after the onset of the calcium rise. The calcium increase in hyposmotic solution did not occur when calcium was eliminated from the bathing medium. The responses to hyposmotic and hyperosmotic stress were different. There was no detectable increase in calcium or PI entry in cells exposed to hyperosmotic solution (500mOsm). In summary, GAP 27-sensitive accumulation of PI by cultured lens epithelium points to connexin hemichannel opening and associated calcium entry. Even though connexins form channels with a large carrying capacity, calcium entry does not increase the cytoplasmic calcium concentration beyond a tolerable physiological range.

Okafor, M. C., & Delamere, N. A. (2001). The inhibitory influence of endothelin on active sodium-potassium transport in porcine lens. Investigative ophthalmology & visual science, 42(5), 1018-23.

Endothelin (ET)-1 is known to inhibit active NaK transport by as much as 50% in kidney tubule and other tissues. The presence of low levels of ET-1 in aqueous humor combined with the potential for release of ET-1 from ciliary processes suggests that the lens could be exposed to ET-1 in vivo. In this study, experiments were conducted to examine the influence of ET-1 on active NaK transport in porcine lens.

Delamere, N. A., & Williams, R. N. (1987). A comparative study on the uptake of ascorbic acid by the iris-ciliary body of the rabbit, guinea pig and rat. Comparative biochemistry and physiology. B, Comparative biochemistry, 88(3), 847-9.

1. The uptake of 14C-ascorbic acid by the iris-ciliary body in vitro was examined in the rabbit, guinea pig and rat. 2. It was observed that iris-ciliary body from the rabbit and guinea pig, but not the rat, accumulated 14C-ascorbate to levels exceeding that in the bathing medium. 3. In all three species, the uptake of 14C-ascorbate was diminished by cold temperature; the degree of uptake at 0 degrees C was similar in the rabbit, guinea pig and rat iris-ciliary body. 4. Chromatographic examination of the 14C accumulated by the rabbit and guinea pig tissue demonstrated that the label remains almost exclusively as 14C-ascorbate.

Drel, V. R., Lupachyk, S., Shevalye, H., Vareniuk, I., Xu, W., Zhang, J., Delamere, N. A., Shahidullah, M., Slusher, B., & Obrosova, I. G. (2010). New therapeutic and biomarker discovery for peripheral diabetic neuropathy: PARP inhibitor, nitrotyrosine, and tumor necrosis factor-{alpha}. Endocrinology, 151(6), 2547-55.

This study evaluated poly(ADP-ribose) polymerase (PARP) inhibition as a new therapeutic approach for peripheral diabetic neuropathy using clinically relevant animal model and endpoints, and nitrotyrosine (NT), TNF-alpha, and nitrite/nitrate as potential biomarkers of the disease. Control and streptozotocin-diabetic rats were maintained with or without treatment with orally active PARP inhibitor 10-(4-methyl-piperazin-1-ylmethyl)-2H-7-oxa-1,2-diaza-benzo[de]anthracen-3-one (GPI-15,427), 30 mg kg(-1) d(-1), for 10 wk after first 2 wk without treatment. Therapeutic efficacy was evaluated by poly(ADP-ribosyl)ated protein expression (Western blot analysis), motor and sensory nerve conduction velocities, and tibial nerve morphometry. Sciatic nerve and spinal cord NT, TNF-alpha, and nitrite/nitrate concentrations were measured by ELISA. NT localization in peripheral nervous system was evaluated by double-label fluorescent immunohistochemistry. A PARP inhibitor treatment counteracted diabetes-induced motor and sensory nerve conduction slowing, axonal atrophy of large myelinated fibers, and increase in sciatic nerve and spinal cord NT and TNF-alpha concentrations. Sciatic nerve NT and TNF-alpha concentrations inversely correlated with motor and sensory nerve conduction velocities and myelin thickness, whereas nitrite/nitrate concentrations were indistinguishable between control and diabetic groups. NT accumulation was identified in endothelial and Schwann cells of the peripheral nerve, neurons, astrocytes, and oligodendrocytes of the spinal cord, and neurons and glial cells of the dorsal root ganglia. The findings identify PARP as a compelling drug target for prevention and treatment of both functional and structural manifestations of peripheral diabetic neuropathy and provide rationale for detailed evaluation of NT and TNF-alpha as potential biomarkers of its presence, severity, and progression.

Kishida, K., Paterson, C. A., & Delamere, N. A. (1982). The influence of tryptophan and its metabolites upon rabbit lens electrolyte balance. Current eye research, 2(5), 309-15.

The effect of tryptophan and three major metabolites of tryptophan on the rabbit lens electrolyte balance was examined. Even at 3 x 10(-3) M tryptophan, tryptamine and xanthurenic acid had no effect on lens sodium, potassium and calcium content after a 20 hr incubation. Small but significant changes in lens sodium and potassium content were induced by 20 hr incubation in 2 x 10(-3) M 3-hydroxy-DL-kynurenine and 10(-3) M hydroxyanthranilic acid. Lens Na, K-ATPase activity was unaffected by 3 x 10(-3) M tryptophan. Tryptamine reduced, to a small extent, Na,K-ATPase activity at 3 x 10(-3) M, but was without effect at 10(-3) M. 3-hydroxy-DL-kynurenine (2 x 10(-3) M) and 3-hydroxyanthranilic acid (10(-3) M) inhibited Na,K-ATPase activity by 27% and 30% respectively. Only 3-hydroxy-DL-kynurenine had a demonstrable effect on 86Rb uptake. It is concluded that, in contrast to findings in the amphibian lens, metabolites of tryptophan have minimal or no detrimental effects upon rabbit lens electrolyte balance under the in vitro conditions of these experiments. However, this does not rule out a long term effect of these compounds should they accumulate in the lens.