Bonnie L Hurwitz

Bonnie L Hurwitz

Assistant Professor, Agricultural-Biosystems Engineering
Assistant Professor, Genetics - GIDP
Assistant Professor, Statistics-GIDP
Clinical Instructor, Pharmacy Practice-Science
Assistant Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-9819

Work Summary

Our lab focuses on large-scale –omics datasets, high-throughput computing, and big data analytics. We leverage these technologies to answer questions related to the relationship between microbes, their hosts, and the environment. In particular, we focus on viral-host interactions and co-evolution given environmental factors (i) in aquatic systems and (ii) for phage treatment of diabetic foot ulcers.

Research Interest

Dr. Bonnie Hurwitz is an Assistant Professor of Biosystems Engineering at the University of Arizona and BIO5 Research Institute Fellow. She has worked as a computational biologist for nearly two decades on interdisciplinary projects in both industry and academia. Her research on the human/earth microbiome incorporates large-scale –omics datasets, high-throughput computing, and big data analytics towards research questions in “One Health”. In particular, Dr. Hurwitz is interested in the relationship between the environment, microbial communities, and their hosts. Dr. Hurwitz is well-cited for her work in computational biology in diverse areas from plant genomics to viral metagenomics with over 1200 citations

Publications

Eizenga, G. C., Sanchez, P. L., Jackson, A. K., Edwards, J. D., Hurwitz, B. L., Wing, R. A., & Kudrna, D. (2017). Genetic variation for domestication-related traits revealed in a cultivated rice, Nipponbare (Oryza sativa ssp. japonica) x ancestral rice, O-nivara, mapping population. MOLECULAR BREEDING, 37(11).
Spichler, A., Hurwitz, B. L., Armstrong, D. G., & Lipsky, B. A. (2015). Microbiology of diabetic foot infections: from Louis Pasteur to 'crime scene investigation'. BMC medicine, 13, 2.

Were he alive today, would Louis Pasteur still champion culture methods he pioneered over 150 years ago for identifying bacterial pathogens? Or, might he suggest that new molecular techniques may prove a better way forward for quickly detecting the true microbial diversity of wounds? As modern clinicians faced with treating complex patients with diabetic foot infections (DFI), should we still request venerated and familiar culture and sensitivity methods, or is it time to ask for newer molecular tests, such as 16S rRNA gene sequencing? Or, are molecular techniques as yet too experimental, non-specific and expensive for current clinical use? While molecular techniques help us to identify more microorganisms from a DFI, can they tell us 'who done it?', that is, which are the causative pathogens and which are merely colonizers? Furthermore, can molecular techniques provide clinically relevant, rapid information on the virulence of wound isolates and their antibiotic sensitivities? We herein review current knowledge on the microbiology of DFI, from standard culture methods to the current era of rapid and comprehensive 'crime scene investigation' (CSI) techniques.

Watts, G. S., Youens-Clark, K., Slepian, M. J., Wolk, D. M., Oshiro, M. M., Metzger, G. S., Dhingra, D., Cranmer, L. D., & Hurwitz, B. L. (2017). 16S rRNA gene sequencing on a benchtop sequencer: accuracy for identification of clinically important bacteria. Journal of applied microbiology, 123(6), 1584-1596.

Test the choice of 16S rRNA gene amplicon and data analysis method on the accuracy of identification of clinically important bacteria utilizing a benchtop sequencer.