Erika D Eggers

Erika D Eggers

Associate Department Head, Research - Physiology
Member of the Graduate Faculty
Professor, BIO5 Institute
Professor, Biomedical Engineering
Professor, Neuroscience - GIDP
Professor, Physiological Sciences - GIDP
Professor, Physiology
Primary Department
Department Affiliations
Contact
(520) 626-7137

Work Summary

My laboratory studies how the retina takes visual information about the world and transmits it to the brain. We are trying to understand how this signaling responds to changing amounts of background light and becomes dysfunctional in diabetes.

Research Interest

The broad goal of research in our laboratory is to understand how inhibitory inputs influence neuronal signaling and sensory signal processing in the healthy and diabetic retina. Neurons in the brain receive inputs that are both excitatory, increasing neural activity, and inhibitory, decreasing neural activity. Inhibitory and excitatory inputs to neurons must be properly balanced and timed for correct neural signaling to occur. To study sensory inhibition we use the retina, a unique preparation which can be removed intact and can be activated physiologically, with light, in vitro. Thus using the retina as a model system, we can study how inhibitory synaptic physiology influences inhibition in visual processing. This intact system also allows us to determine the mechanisms of retinal damage in early diabetes. Keywords: neuroscience, diabetes, vision, electrophysiology, light

Publications

Herrmann, R., Heflin, S. J., Hammond, T., Lee, B., Wang, J., Gainetdinov, R. R., Caron, M. G., Eggers, E. D., Frishman, L. J., McCall, M. A., & Arshavsky, V. Y. (2011). Rod vision is controlled by dopamine-dependent sensitization of rod bipolar cells by GABA. Neuron, 72(1), 101-10.

Dark and light adaptation of retinal neurons allow our vision to operate over an enormous light intensity range. Here we report a mechanism that controls the light sensitivity and operational range of rod-driven bipolar cells that mediate dim-light vision. Our data indicate that the light responses of these cells are enhanced by sustained chloride currents via GABA(C) receptor channels. This sensitizing GABAergic input is controlled by dopamine D1 receptors, with horizontal cells serving as a plausible source of GABA release. Our findings expand the role of dopamine in vision from its well-established function of suppressing rod-driven signals in bright light to enhancing the same signals under dim illumination. They further reveal a role for GABA in sensitizing the circuitry for dim-light vision, thereby complementing GABA's traditional role in providing dynamic feedforward and feedback inhibition in the retina.

Eggers, E., Mazade, R. E., & Eggers, E. D. (2013). Light adaptation alters the source of inhibition to the mouse retinal OFF pathway. Journal of neurophysiology.

Sensory systems must avoid saturation to encode a wide range of stimulus intensities. One way the retina accomplishes this is by using both dim light-sensing rod and bright light-sensing cone photoreceptor circuits. OFF cone bipolar cells are a key point in this process, as they receive both excitatory input from cones and inhibitory input from AII amacrine cells via the rod pathway. However, in addition to AII amacrine cell input, other inhibitory inputs from cone pathways also modulate OFF cone bipolar cell light signals. It is unknown how these inhibitory inputs to OFF cone bipolar cells change when switching between rod and cone pathways or if all OFF cone bipolar cells receive rod pathway input. We found that one group of OFF cone bipolar cells (types 1,2, and 4) receive rod-mediated inhibitory inputs that likely come from the rod - AII amacrine cell pathway, while another group of OFF cone bipolar cells (type 3) do not. In both cases, dark-adapted rod dominant light responses showed a significant contribution of glycinergic inhibition, which decreased with light adaptation and was, surprisingly, compensated by an increase in GABAergic inhibition. As GABAergic input has distinct timing and spatial spread from glycinergic input, a shift from glycinergic to GABAergic inhibition could significantly alter OFF cone bipolar cell signaling to downstream OFF ganglion cells. Larger GABAergic input could reflect an adjustment of OFF bipolar cell spatial inhibition which may be one mechanism that contributes to retinal spatial sensitivity in the light.

Eggers, E. D., O'Brien, J. A., & Berger, A. J. (2000). Developmental changes in the modulation of synaptic glycine receptors by ethanol. Journal of Neurophysiology.
Eggers, E. D., McCall, M. A., & Lukasiewicz, P. D. (2007). Presynaptic inhibition differentially shapes transmission in distinct circuits in the mouse retina. The Journal of physiology, 582(Pt 2), 569-82.

Diverse retinal outputs are mediated by ganglion cells that receive excitatory input from distinct classes of bipolar cells (BCs). These classes of BCs separate visual signals into rod, ON and OFF cone pathways. Although BC signalling is a major determinant of the ganglion cell-mediated retinal output, it is not fully understood how light-evoked, presynaptic inhibition from amacrine cell inputs shapes BC outputs. To determine whether differences in presynaptic inhibition uniquely modulate BC synaptic output to specific ganglion cells, we assessed the inhibitory contributions of GABA(A), GABA(C) and glycine receptors across the BC pathways. Here we show that different proportions of GABA(A) and GABA(C) receptor-mediated inhibition determined the kinetics of GABAergic presynaptic inhibition across different BC classes. Large, slow GABA(C) and small, fast GABA(A) receptor-mediated inputs to rod BCs prolonged light-evoked inhibitory postsynaptic currents (L-IPSCs), while smaller GABA(C) and larger GABA(A) receptor-mediated contributions produced briefer L-IPSCs in ON and OFF cone BCs. Glycinergic inhibition also varied across BC class. In the rod-dominant conditions studied here, slow glycinergic inputs dominated L-IPSCs in OFF cone BCs, attributable to inputs from the rod pathway via AII amacrine cells, while rod and ON cone BCs received little and no glycinergic input, respectively. As these large glycinergic inputs come from rod signalling pathways, in cone-dominant conditions L-IPSCs in OFF cone bipolar cells will probably be dominated by GABA(A) receptor-mediated input. Thus, unique presynaptic receptor combinations mediate distinct forms of inhibition to selectively modulate BC outputs, enhancing the distinctions among parallel retinal signals.

Eggers, E. D., & Lukasiewicz, P. D. (2006). GABA(A), GABA(C) and glycine receptor-mediated inhibition differentially affects light-evoked signalling from mouse retinal rod bipolar cells. The Journal of physiology, 572(Pt 1), 215-25.

Rod bipolar cells relay visual signals evoked by dim illumination from the outer to the inner retina. GABAergic and glycinergic amacrine cells contact rod bipolar cell terminals, where they modulate transmitter release and contribute to the receptive field properties of third order neurones. However, it is not known how these distinct inhibitory inputs affect rod bipolar cell output and subsequent retinal processing. To determine whether GABA(A), GABA(C) and glycine receptors made different contributions to light-evoked inhibition, we recorded light-evoked inhibitory postsynaptic currents (L-IPSCs) from rod bipolar cells mediated by each pharmacologically isolated receptor. All three receptors contributed to L-IPSCs, but their relative roles differed; GABA(C) receptors transferred significantly more charge than GABA(A) and glycine receptors. We determined how these distinct inhibitory inputs affected rod bipolar cell output by recording light-evoked excitatory postsynaptic currents (L-EPSCs) from postsynaptic AII and A17 amacrine cells. Consistent with their relative contributions to L-IPSCs, GABA(C) receptor activation most effectively reduced the L-EPSCs, while glycine and GABA(A) receptor activation reduced the L-EPSCs to a lesser extent. We also found that GABAergic L-IPSCs in rod bipolar cells were limited by GABA(A) receptor-mediated inhibition between amacrine cells. We show that GABA(A), GABA(C) and glycine receptors mediate functionally distinct inhibition to rod bipolar cells, which differentially modulated light-evoked rod bipolar cell output. Our findings suggest that modulating the relative proportions of these inhibitory inputs could change the characteristics of rod bipolar cell output.