Gene A Giacomelli

Gene A Giacomelli

Professor, Agricultural-Biosystems Engineering
Professor, Applied BioSciences - GIDP
Professor, Plant Science
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-9566

Work Summary

Gene Giacmomelli's research focus includes controlled environment plant productions systems [greenhouse and growth chamber] research, design, development and applications, with emphases on: crop production systems, nutrient delivery systems, environmental control, mechanization, and labor productivity.

Research Interest

Gene Giacomelli, PhD, is the director of the CEAC, or interdisciplinary education, research and outreach program for greenhouse and other advanced technology systems. Here at the University of Arizona, he teaches Controlled Environment Systems, which is an introduction to the technical aspects of greenhouse design, environmental control, nutrient delivery systems, hydroponic crop production, intensive field production systems, and post-harvest handling and storage of crops. His research interests include controlled environment plant productions systems (greenhouse and growth chamber) research, design, development and applications, with emphases on: crop production systems, nutrient delivery systems, environmental control, mechanization, and labor productivity.

Publications

Ting, K. C., Ling, P. P., & Giacomelli, G. A. (1997). Sustaining human lives in outer space. Resource: Engineering and Technology for Sustainable World, 4(3), 7-8.

Abstract:

A mission aboard a space vehicle to other planets takes time. To sustain life, the space crew's three basic needs including air, water and food need to be replenished. Today, researchers are studying alternatives to meet these needs considering the special circumstances related to space travel. Efforts to develop bioregenerative life support systems (BLSS) are underway. Over the years, NASA has been providing leadership in developing BLSS.

Giacomelli, G. A. (2011). Simulated performance of a greenhouse cooling control strategy with natural ventilation and fog cooling.. Not applicable.

Simulated performance of a greenhouse cooling control strategy with natural ventilation and fog cooling. Villarreal-Guerrero, F., M. Kacira, e. Fitz-Rodriguez, R. Linker, C. Kubota, G. giacomelli, A. Arbel. 2011. Simulated performance of a greenhouse cooling control strategy with natural ventilation and fog cooling. Biosystems Engineering. Published.

Ling, P. P., Giacomelli, G. A., & Russell, T. (1996). Monitoring of plant development in controlled environment with machine vision. Advances in Space Research, 18(4-5), 101-112.

PMID: 11538786;Abstract:

Information acquisition is the foremost requirement for the control and continued operation of any complex system. This is especially true when a plant production system is used as a major component in a sustainable life support system. The plant production system not only provides food and fiber but is a means of providing critically needed life supporting elements such as O2 and purified H2O. The success of the plant production system relies on close monitoring and control of the production system. Machine vision technology was evaluated for the monitoring of plant health and development and showed promising results. Spectral and morphological characteristics of a model plant were studied under various artificially induced stress conditions. From the spectroscopic studies, it was found that the stresses can be determined from visual and non-visual symptoms. The development of the plant can also be quantified using a video image analysis base approach. The correlations between the qualities of the model plant and machine vision measured spectral features were established. The success of the research has shown a great potential in building an automated, closed-loop plant production system in controlled environments.

Sase, S., Ishii, M., Moriyama, H., Kurata, K., Sabeh, N., Romero, P., Giacomelli, G. A., Kubota, C., & Hayashi, M. (2006). Effect of natural ventilation rate on relative humidity and water use for fog cooling in a semiarid greenhouse. Acta Horticulturae, 719, 385-392.

Abstract:

Using a single-span double-polyethylene greenhouse without plants, the effect of natural ventilation rate on humidity and water use for fog cooling was investigated. A simple and unique control algorithm for fog cooling was proposed and tested. The greenhouse was equipped with high-pressure fog nozzles, roll-up side vents with insect screens and a roof vent. Fogging was operated cyclically with an air temperature set point of 24.5°C. Under several configurations of vent openings, the greenhouse environmental conditions and the outside weather conditions were monitored. The natural ventilation rate was measured continuously by the tracer gas method. The fog generated was collected and measured at 15-min intervals. Results showed that the inside relative humidity decreased with an increase in ventilation rate as expected from simulations based on the steady-state energy balance equations using a software Visual VETH, while the water used for fog cooling increased. For example, the humidity decreased from approximately 80 to 65% on a clear day when the ventilation rate was increased from 1 to 3.5 m3 m-2 min-1, while the water use increased from 18 to 21 g m-2 min-1. There was good agreement between the measured 45-min averages of ventilation rate and the predicted ventilation rates by Visual VETH. The control algorithm which incorporated the adjustment of vent openings demonstrated the possibility of maintaining relative humidity and air temperature simultaneously within a desirable range (65-75% and 24-25°C, respectively) while reducing the water used for fog cooling.

Ting, K. C., Ling, P. P., & Giacomelli, G. A. (1996). Research on flexible automation and robotics for plant production at Rutgers University. Advances in Space Research, 18(1-2), 175-180.

PMID: 11538960;Abstract:

This is an overview of research activities in the areas of flexible automation and robotics (FAR) within controlled environment plant production systems (CEPPS) in the Department of Bioresource Engineering, Rutgers University. In the past thirty years, our CEPPS research has dealt with the topics including structures and energy, environmental monitoring and control, plant growing systems, operations research and decision support systems, flexible automation and robotics, and impact to natural (i.e. surrounding) environment. Computer and modeling/simulation techniques have been utilized extensively. Mechanized systems have been developed to substitute human's physical labor and maintain uniformity in production. Automation research has been directed towards adding, to the mechanized systems, the capabilities of perception, reasoning, communication, and task planning. Computers, because of their programmability, provide flexibility to automated systems, when incorporated with generic hardware devices. Robots are ideal hardware tools to be employed in flexible automation systems. Some technologies developed in our CEPPS research may be readily adaptable to Closed Bioregenerative Life Support Systems (CBLSS).