Gene A Giacomelli

Gene A Giacomelli

Professor, Agricultural-Biosystems Engineering
Professor, Applied BioSciences - GIDP
Professor, Plant Science
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-9566

Work Summary

Gene Giacmomelli's research focus includes controlled environment plant productions systems [greenhouse and growth chamber] research, design, development and applications, with emphases on: crop production systems, nutrient delivery systems, environmental control, mechanization, and labor productivity.

Research Interest

Gene Giacomelli, PhD, is the director of the CEAC, or interdisciplinary education, research and outreach program for greenhouse and other advanced technology systems. Here at the University of Arizona, he teaches Controlled Environment Systems, which is an introduction to the technical aspects of greenhouse design, environmental control, nutrient delivery systems, hydroponic crop production, intensive field production systems, and post-harvest handling and storage of crops. His research interests include controlled environment plant productions systems (greenhouse and growth chamber) research, design, development and applications, with emphases on: crop production systems, nutrient delivery systems, environmental control, mechanization, and labor productivity.

Publications

Giacomelli, G. A., Paterson, R. L., Sadler, P., & Barta, D. J. (2003). Development and evaluation of an advanced water-jacketed high intensity discharge lamp. SAE Technical Papers.

Abstract:

During the period July 2001 to March 2002, the performance of a water-jacketed high intensity discharge lamp of advanced design was evaluated within a lamp test stand at The University of Arizona (UA), Controlled Environment Agriculture Center (CEAC) in Tucson, Arizona. The lamps and test stand system were developed by Mr. Phil Sadler of Sadler Machine Company, Tempe, Arizona, and supported by a Space Act Agreement between NASA-Johnson Space Center (JSC) and UA. The purpose was for long term testing of the prototype lamp and demonstration of an improved procedure for use of water-jacketed lamps for plant production within the close confines of controlled environment facilities envisioned by NASA within Bioregenerative Life Support Systems. The lamp test stand consisted of six, 400 watt water-cooled, high pressure sodium HID lamps, mounted within a framework. A nutrient delivery system consisting of nutrient film technique re-circulation troughs and a storage tank was also included, but plants grown in the system were not evaluated in this time period. The performance of the lamps was quantified in terms of photosynthetic photon flux (PPF), and spectral irradiance during the 9-month testing period. In addition, an energy balance and a series of short term tests were completed on the lamp system. The lamps were operated on a 16 hour 'on' and 8 hour 'off' duty cycle each day. The total operation time for the lamps during the test period was 4208 hour. The following report describes a series of tests performed on the water-cooled high pressure sodium (HPS) lamp system. Copyright © 2003 SAE International.

Villarreal-Guerrero, F., Kacira, M., Fitz-Rodríguez, E., Kubota, C., Giacomelli, G. A., Linker, R., & Arbel, A. (2012). Comparison of three evapotranspiration models for a greenhouse cooling strategy with natural ventilation and variable high pressure fogging. Scientia Horticulturae, 134, 210-221.

Abstract:

Even though several models to predict evapotranspiration (ET) of greenhouse crops have been developed, previous studies have evaluated them under fixed greenhouse conditions. It is still not clear which model is more appropriate, accurate, and best suited for applications such as inclusion in greenhouse cooling strategies for different crops, climatic conditions and greenhouse cooling settings. This study evaluated three theoretical models (Stanghellini, Penman-Monteith and Takakura) to simulate the ET of two crops (bell pepper and tomato), under two greenhouse cooling settings (natural ventilation with fog cooling and mechanical ventilation with pad and fan), and for three growing seasons (spring, summer, fall). Predictions of ET from the models were compared to measured values obtained from sap flow gauges. Inputs of internal and external crop resistances for Stanghellini and Penman-Monteith models were calibrated separately by crop and by model. Even though Stanghellini model produced the smallest deviations of the predicted ET from the measured ET, having the best overall performance under all conditions evaluated, an analysis of variance of the daily mean square errors did not show significant differences (α= 0.05) between the three models. This suggested that any of the three models could be used for inclusion in a greenhouse cooling climate control strategy. However, parameter adjustments such as stomatal and aerodynamic resistances, and the need of leaf area index (LAI) in the models of Penman-Monteith and Stanghellini represent a limitation for this application. The Takakura model was found to be easier to implement; however as the crop grows, careful adjustments on the height of the solarimeter used for this approach are required. Such adjustments determine the field of view of the solarimeter and play a significant role on the determination of radiation balances and the average apparent temperature of the evaporative surface. © 2011.

Sadler, P. D., & Giacomelli, G. A. (2002). Mars inflatable greenhouse analog.. Life support & biosphere science : international journal of earth space, 8(2), 115-123.

PMID: 11987303;Abstract:

Light intensities on the Martian surface can possibly support a bioregenerative life support system (BLSS) utilizing natural sunlight for hydroponic crop production, if a suitable controlled environment can be provided. Inflatable clear membrane structures offer low mass, are more easily transported than a rigid structure, and are good candidates for providing a suitable controlled environment for crop production. Cable culture is one hydroponic growing system that can take advantage of the beneficial attributes of the inflatable structure. An analog of a Mars inflatable greenhouse can provide researchers data on issues such as crew time requirements for operation, productivity for BLSS, human factors, and much more at a reasonable cost. This is a description of one such design.

Giacomelli, G. A., Ting, K. C., & Ling, P. P. (1994). Systems approach to instrumenting and controlling plant growth systems. Advances in Space Research, 14(11), 191-197.

PMID: 11540180;Abstract:

Acquisition and analysis of sensory information are foremost for the control and continued operation of any complex system. The sensors and their attributes must be selected by understanding the biological and physical parameters which, first, can describe, and second, when linked to control systems, can modulate, the plant growth system. These parameters are not all understood, or known, and practical sensors may not even exist for their measurement. A systematic analysis of the general plant system would: focus without prejudice on all the descriptive parameters, as well as, their interrelationships within the biophysical system; highlight the significance of each parameter; expose the areas of weakness and strength of current knowledge; expand the knowledge base; provide the platform for the development of operational models for real-time monitoring and control requirements; and support the longer term tactical and strategic planning needs. Components of such a procedure of systematic analysis which is in development for intensive plant production systems within controlled environments will be discussed. © 1994.

Sabeh, N. C., Giacomelli, G. A., & Kubota, C. (2011). Water use in a greenhouse in a semi-arid climate. Transactions of the ASABE, 54(3), 1069-1077.

Abstract:

Greenhouse crop production in semi-arid climates is desirable because high solar radiation levels are consistent year round. The use of evaporative cooling will further increase yields and crop consistency. However, these regions typically receive less than 500 mm of rain annually, making water use management a critical concern. This study evaluated water use for irrigation (WU I) and pad-and-fan (WU PF) evaporative cooling systems in a single-span, polyethylene-covered greenhouse in Tucson, Arizona, from March to October 2006. A single-use, non-recirculating irrigation system delivered water to hydroponically grown tomatoes. The pad-and-fan system was computer controlled to maintain day/night air temperatures of 24°C/18°C. The total eight-month WU I and WU PF were 780 and 1450 L m -2, respectively. WU I increased steadily from 4.3 L m -2 d -1 during crop establishment to 7.2 L m -2 d -1 when the plants were mature. WU PF increased from 1.1 L m -2 d -1 during early spring to a peak of 11 L m -2 d -1 during the hottest, driest outside conditions. The water use efficiency (WUE, kg yield per m 3 water use) of the irrigation and pad-and-fan cooling systems was 30 and 16 kg m -3, respectively. When WUE was calculated by combining WU I and WU PF, the total greenhouse WUE was 11 kg m -3. Theoretically, using a 100% recirculating irrigation system could have produced a greenhouse WUE of 13 kg m -3. This study demonstrates that although greenhouses achieve high annual yields with low irrigation rates, using an evaporative cooling system reduces greenhouse WUE to field WUE levels. To minimize greenhouse water use while maintaining high crop yields, this study recommends further examination of the use of recirculating irrigation systems, variable-speed fans to improve climate control, alternative cooling systems, and drought-tolerant crops. © 2011 American Society of Agricultural and Biological Engineers.