Gene A Giacomelli

Gene A Giacomelli

Professor, Agricultural-Biosystems Engineering
Professor, Applied BioSciences - GIDP
Professor, Plant Science
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-9566

Work Summary

Gene Giacmomelli's research focus includes controlled environment plant productions systems [greenhouse and growth chamber] research, design, development and applications, with emphases on: crop production systems, nutrient delivery systems, environmental control, mechanization, and labor productivity.

Research Interest

Gene Giacomelli, PhD, is the director of the CEAC, or interdisciplinary education, research and outreach program for greenhouse and other advanced technology systems. Here at the University of Arizona, he teaches Controlled Environment Systems, which is an introduction to the technical aspects of greenhouse design, environmental control, nutrient delivery systems, hydroponic crop production, intensive field production systems, and post-harvest handling and storage of crops. His research interests include controlled environment plant productions systems (greenhouse and growth chamber) research, design, development and applications, with emphases on: crop production systems, nutrient delivery systems, environmental control, mechanization, and labor productivity.

Publications

Takakura, T., Kubota, C., Sase, S., Hayashi, M., Ishii, M., Takayama, K., Nishina, H., Kurata, K., & Giacomelli, G. A. (2007). Evapotranspiration rate measurement by energy-balance equation in a single-span greenhouse. 2007 ASABE Annual International Meeting, Technical Papers, 8 BOOK.

Abstract:

An energy balance equation was used to estimate evapotranspiration in a greenhouse, and an instrument for this purpose was developed. It was found that the present method is simpler than that using the Penman-Monteith equation and the estimated values by this method were in good agreement with measured data. It is also reported that normal radiation sensor measurements on a horizontal surface are not adequate for measuring radiation received by a plant canopy in a greenhouse.

Giacomelli, G. A. (2009). Engineering principles impacting high-tunnel environments. HortTechnology, 19(1), 30-33.

Abstract:

High tunnels are a special type of greenhouse with primary operational goals of season extension, crop quality improvement, and new crop production opportunities to reach unique markets. From an engineering viewpoint, high tunnels have many of the same design concerns as larger, more complex greenhouses. They capitalize on the greenhouse effect as do all enclosed plant growth structures. However, less automated environmental control systems are required for the desired crop production. Tunnel designs are less complex and less expensive than large high-technology greenhouse ranges, but they must be designed and constructed with the fundamental assurance of structural stability, safety, efficient layout, appropriate environmental control, and effective crop management in mind.

Lobascio, C., Boscheri, G., Lamantea, M., Pascale, S. D., Giacomelli, G., Sadler, P., & Wheeler, R. (2012). Review and perspectives of plant cultivation facilities and technologies for space exploration. Proceedings of the International Astronautical Congress, IAC, 1, 565-572.

Abstract:

Future habitation of space will necessitate engineering of complex systems capable of performing critical tasks for life support, including atmosphere revitalization, water purification and food production. Bio-regenerative Life Support Systems represent an integrated solution to these problems, with higher plants cultivation facilities as a key element capable of providing a variable percentage of the astronauts' diet. A Food Complement Unit is a potential solution for providing fresh crops and dietary supplements for the crew on the International Space Station (ISS) and future space exploration vehicles. Larger greenhouses are envisaged on planetary surfaces for longer missions, providing percentages of astronauts' diet up to 40 - 50%. Safe, sustainable and reliable operations of such systems in their relevant environment, mission and associated spacecraft is challenging and requiring an organized technological development approach. Critical subsystems necessitating further technological development include: Nutrient Delivery System - with root zone interactions, multi-phase flows, bio-contamination issues, and optimization of growth substrates Plant Illumination System - with associated high energy consumption, to be reduced via alternative light delivery strategies and technologies - Air Management - featuring trace contaminants removal, gas exchange with the crew quarters Exploitation of the ISS and of Earth analogues are opportunities to be pursued for such critical technologies demonstration, to provide a solid baseline for exploration architectural studies. This paper reports a brief summary of existing plant growth facilities, a review of the most critical plant production technologies and a roadmap for necessary further developments, focusing on the potential of ISS and of Earth analogues exploitation for their demonstration. ©(2012) by the International Astronautieal Federation.

Fitz-Rodríguez, E., Kubota, C., Giacomelli, G. A., Tignor, M. E., Wilson, S. B., & McMahon, M. (2010). Dynamic modeling and simulation of greenhouse environments under several scenarios: A web-based application. Computers and Electronics in Agriculture, 70(1), 105-116.

Abstract:

Greenhouse crop production systems are located throughout the world within a wide range of climatic conditions. To achieve environmental conditions favorable for plant growth, greenhouses are designed with various components, structural shapes, and numerous types of glazing materials. They are operated differently according to each condition. To improve the pedagogy and the understanding of the complexity and dynamic behavior of greenhouse environments with different configurations, an interactive, dynamic greenhouse environment simulator was developed. The greenhouse environment model, based on energy and mass balance principles, was implemented in a web-based interactive application that allowed for the selection of the greenhouse design, weather conditions, and operational strategies. The greenhouse environment simulator was designed to be used as an educational tool for demonstrating the physics of greenhouse systems and environmental control principles. Several scenarios were simulated to demonstrate how a specific greenhouse design would respond environmentally for several climate conditions (four seasons of four geographical locations), and to demonstrate what systems would be required to achieve the desired environmental conditions. The greenhouse environment simulator produced realistic approximations of the dynamic behavior of greenhouse environments with different design configurations for 28-h simulation periods.

Ting, K. C., & Giacomelli, G. A. (1987). AVAILABILITY OF SOLAR PHOTOSYNTHETICALLY ACTIVE RADIATION.. Transactions of the American Society of Agricultural Engineers, 30(5), 1453-1457.

Abstract:

Experiments have been conducted to determine the correlations between the available hourly and daily photosynthetically active radiation (PAR) and total solar radiation. PAR was measured in the photon flux density unit of mol s** minus **1 m** minus **2 and total radiation was in the radiant flux density of W m** minus **2. Regression equations are presented in this paper for two purposes: (a) to show the predictability of PAR using available total solar radiation data, and (b) to provide empirical equations for estimating direct and diffuse PAR based on total radiation values.